QUANTUM MECHANICS

40.1. IDpENTIFY: Using the momentum of the free electron, we can calculate £ and @ and use these to express
its wave function.

SETUP: W(x,1)= Ae™e™ ™ k= p/h, and w=hk*/2m.
24
— k=£=_4.50><10 ig m/s
n 1.055%x1074 J-s
hk* _ (1.055x107 1-5)(4.27x10" m™")?
2m 2(9.108x107! kg)

. 10—\, 17 -1
W(x,t) = Ae1427X10" m)x =i11.05x107 571

=-427x10"" m™".

=1.05x10"7 s7".

EVALUATE: The wave function depends on position and time.
40.2. IpENTIFY: Using the known wave function for the particle, we want to find where its probability function
is @ maximum.

SET UP: |‘I‘(x,t)|2 _ |A|2[eikxe—ia)t _ ezikre4iwt][e—ikxe+iwt _ e—2ikxe+4iwz]_
|‘I‘(x,t)|2 _ |A|2 2- [e—[(kx—3a)t) + e+i(kxf3wl)]) — 2|A|2 (1= cos(kx —3ar)).
EXECUTE: (a)For =0, |‘I‘(x,t)|2 = 2|A|2 (1-cos(kx)). |‘I‘(x,t)|2 is a maximum when cos(kx) =—1 and

this happens when kx=(2n+1)z, n=0,1,.... |‘P(x, t)|2 is a maximum for x = %, 37, etc.

®) 1=2F and 301 =6r. [W(x, ) = 2|4 (1- cos(kx — 67)). Maximum for kx— 67 = 7, 37,..., which
[0

. . T 97

gives maxima when x=—, —.
k k
Trlk—nmlk 3 - .
(c¢) From the results for parts (a) and (b), v,, = Rk _a)' Vyy = DD with @, =4, =,
av av 2 @
27/ w k ky — Ky
3w

ky =2k and k =k gives v,, = n

EVALUATE: The expressions in part (c) agree.

40.3. IDENTIFY: Use the wave function from Example 40.1.
2

SETUP: |W(x, )| = 2| 4" {1+ cos[(k, — k) x— (@, — @)1}, ky =3k =3k. @= ZL 50 @, =9, =9,
m

[W(x, 0 = 2|4 {1+ cos(2kx —8ax)}.

EXECUTE: (a) At ¢ =27/m, |W(x,0)|" = 2| 4] {1+ cos(2kx—167)}. |W(x,0)|* is maximum for

cos(2kx —16m) =1. This happens for 2kx —167x =0, 27,... . Smallest positive x where |‘{’(x, t)|2 isa

. . 87
maximumis x = 7
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40.4.

40.5.

40.6.

40.7.

40.8.

40.9.

8k 4w

—— = V= .

2rlw  k ky—k 2k k
EVALUATE: The two expressions agree.

IDENTIFY: We have a free particle, described in Example 40.1.

-0 _ h (g-k)_ h (gp+k)-k)_
EVALUATE: This is the same as the classical physics result, v= p/m = mv/m =v.

w0 _to_do

(b) From the result of part (a), v,, =

SET UP and EXECUTE: v, =

(ky + k) =2av.
m

IDENTIFY and SET UP:  y/(x) = Asinkx. The position probability density is given by |l//()c)|2 = A*sin? kx.
EXECUTE: (a) The probability is highest where sinkx=1so kx =2zx/A=nz/2,n=1, 3,5,...
x=nAl4,n=1,3,5,... sox=A/4,31/4, 51/4,...

(b) The probability of finding the particle is zero where |l//|2 =0, which occurs where sinkx =0 and
kx=2nx/A=nm,n=0,1,2,...

x=nA/2,n=0,1,2,... sox=0,4/2,1,34/2,...

EVALUATE: The situation is analogous to a standing wave, with the probability analogous to the square of
the amplitude of the standing wave.

IDENTIFY and SET UP: |‘I’|2 =¥y

EXECUTE: W' =y sinax, so |‘I‘|2 =V'Y =y ysin’ o = |l//|2 sin” . |‘I’|2 is not time-independent, so
¥ is not the wavefunction for a stationary state.

EVALUATE: Y= l//eiw‘b = (cosax +isinax) is a wavefunction for a stationary state, since for it

|‘I’|2 = |1//|2, which is time independent.
2 2

. d .
IDENTIFY: Determine whether or not —z—d—l’zy + Uy isequal to Ey, for some value of E.
m dx
n? dzl// n? d* v,
SETUP: ———L+Uy,=Ejy, and ———22+Uy, =E
m d Vi =Ly 2 Vr =Ly,
2 2 w
EXECUTE: S 2 +Uw = BE\y, + CE,y,. If y were a solution with energy E, then
m dx

BE\y, + CE,w, = BEy, + CEy, or B(E; - E)y; = C(E - E,)y,. This would mean that y; is a constant
multiple of y,, and y; and y, would be wave functions with the same energy. However, E| # E,, so this
is not possible, and ' cannot be a solution to Eq. (40.23).

EVALUATE: v isasolution if E| = E,; see Exercise 40.9.

IDENTIFY: Apply the Heisenberg Uncertainty Principle in the form AxAp, >7/2.

SET UP: The uncertainty in the particle position is proportional to the width of (x).

EXECUTE: The width of y/(x) is inversely proportional to Jor. This can be seen by either plotting the
function for different values of « or by finding the full width at half-maximum. The particle’s uncertainty
in position decreases with increasing o.

(b) Since the uncertainty in position decreases, the uncertainty in momentum must increase.
EVALUATE: As ¢ increases, the function A(k) in Eq. (40.19) must become broader.

2 52

IDENTIFY: Determine whether or not ——d—zj +Uy isequalto Ey.
2m dx
. . n*d 21//l
SETUP: 1y, and y, are solutions with energy £ means that ™ 2 +Uy; = Ey; and
m dx

n d*y,
-— +Uy, =Ey,.

m dx2 '//2 '//2
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2 42

EXECUTE: Eq. (40.23) LY s Uy = By Let y=dy, + By,
2m dx
—n? d?
SEF(A%+BV/2)+U(AV/1+B‘//2)=E(AW1+BV/2)
X

2 52 2 52
=4 L 1/2/1 +Uy, - Ey, |+B L l/;z +Uw, — Ey, |=0. But each of y; and v, satisfy
2m dx 2m dx

Schrédinger’s equation separately so the equation still holds true, for any 4 or B.
EVALUATE: If y; and y, are solutions of the Schrodinger equation for different energies, then

¥ = By, + Cy, is not a solution (Exercise 40.7).
40.10. IpENTIFY: To describe a real situation, a wave function must be normalizable.

SET UP: |1//|2 dV s the probability that the particle is found in volume dV. Since the particle must be

somewhere,  must have the property that .H wlzd V' =1 when the integral is taken over all space.
EXECUTE: (a) For normalization of the one-dimensional wave function, we have

1= ij| l//12dx = J._()M(Aebx)zdx + j: (4™ dx = J-ic A2 ax + _[:Aze_bedx.

x| b [ 2
e e A . . -1 —12

1= 42 + =—, which gives A=~b=+2.00m™" =141 m

2b -2b 0 b
(b) The graph of the wavefunction versus x is given in Figure 40.10.

5.00 5.00
© @ P= J.Jr " |l//|2dx = 2I+ T g2 dx, where we have used the fact that the wave function is an
~0.500 m 0

even function of x. Evaluating the integral gives

2 _ -1
p_4 (200500 m) _p) (2.00 m )(672.00 _1)=0.865

b 2.00m™"
There is a little more than an 86% probability that the particle will be found within 50 cm of the origin.
(i) P= jo (e )dx= | O 2Pty = £ Lmjl ~L_0.500
= e 26 2(2.00m™) 2
There is a 50-50 chance that the particle will be found to the left of the origin, which agrees with the fact
that the wave function is symmetric about the y-axis.

1L00m 5 _
(iii) Pz.[ AP P dx
0.500 m

"2
EVALUATE: There is little chance of finding the particle in regions where the wave function is small.

A (2200 m™)(1.00 m) _ ,-2(2.00 m™)(0.500 m)y _%(8—4 )= 00585

Y(x)

Figure 40.10
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2,2
L . h
40.11.  IDENTIFY and SET UP: The energy levels for a particle in a box are given by £, = ;l 7
m
—34 2
EXECUTE: (a) The lowest level is for n=1, and E, = (1)(6-626x10 7" 1-5) =1.6x107%" J.

8(0.20 kg)(1.3 m)?

[ —67
(b) E= %mv2 so v= /E = % =1.3x107> m/s. If the ball has this speed the time it
m . g

would take it to travel from one side of the table to the other is

t:m—;r;:l.OxlO” s.
1.3x107>% mys
h2
© By =5, Ey=4E;, so AE=E, ~ E; =3, =3(1.6x107%7 1) =4.9x107%" J.
m

(d) EVALUATE: No, quantum mechanical effects are not important for the game of billiards. The discrete,
quantized nature of the energy levels is completely unobservable.

40.12. IDENTIFY: Solve Eq. (40.31) for L.
SET UP: The ground state has n=1.

o h (6.626x107* J-5)
J8mE; \/8(1.673><10‘27 kg)(5.0x10° eV)(1.602x107" J/eV)

EVALUATE: The value of L we calculated is on the order of the diameter of a nucleus.
40.13. IDENTIFY: An electron in the lowest energy state in this box must have the same energy as it would in the
ground state of hydrogen.

EXECUTE: =64x10"" m

nh?
8ml?
EXECUTE: An electron in the ground state of hydrogen has an energy of —13.6 eV, so find the width

SET UP: The energy of the n™ level of an electron in a box is E, =

corresponding to an energy of E; =13.6 eV. Solving for L gives
b (6.626x107* J -5)
\8mE, \/8(9.1 1x107 kg)(13.6 eV)(1.602 x 107" J/eV)

EVALUATE: This width is of the same order of magnitude as the diameter of a Bohr atom with the
electron in the K shell.

=1.66x1071" m.

40.14. IpENTIFY and SET UP: The energy of a photon is £ = Af = h%. The energy levels of a particle in a box

are given by Eq. (40.31).

8 2
GO0 Y _y 631071y, AE:h—z(nf—nf).
(122x10™° m) 8mL

. z\/hz(nf —n?) =\/ (6.63x107* J.5)2(22 —12)
8SmAE 8(9.11x1073! kg)(1.63x107'% J)
(b) The ground state energy for an electron in a box of the calculated dimensions is
Ee h? _ (6.63%x107* J-5)?
8mL?  8(9.11x107>! kg)(3.33x1071% m)?
photon energy), which does not correspond to the —13.6 eV ground state energy of the hydrogen atom.

EXECUTE: (a) E =(6.63x107*J-s)

=3.33x107"" m.

=5.43x107" 1=3.40 eV (one-third of the original

EVALUATE: (c) Note that the energy levels for a particle in a box are proportional to n?, whereas the

energy levels for the hydrogen atom are proportional to —%. A one-dimensional box is not a good model
n

for a hydrogen atom.
40.15.  IDENTIFY and SET UP: Eq. (40.31) gives the energy levels. Use this to obtain an expression for E, — E;

and use the value given for this energy difference to solve for L.
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40.16.

40.17.

40.18.

40.19.

. * . , 41’
EXECUTE: Ground state energy is £, =——; first excited state energy is E, = 5 The energy
8mL 8mL
, , 3 3
separation between these two levels is AE=F, - E; = 5. This gives L=h, | ——=
L 8mAE

3
8(9.109 x107! kg)(3.0 eV)(1.602x 1077 J/1 eV)

EVALUATE: This energy difference is typical for an atom and L is comparable to the size of an atom.
IDENTIFY: The energy of the absorbed photon must be equal to the energy difference between the two states.
: . 97°n?
SET UP and EXECUTE: The second excited state energy is E5 = P
m

=6.1x107"" m=0.61 nm.

L=6.626x10"* J-s\/

. The ground state energy is

2 2
E, =”2—hz. E;=1.00 eV, so E5=9.00 eV. For the transition AE =4”2—Z. E =AE.
2mlL mL” A
-15 8
/1=£=(4'136X10 eV -5)(2.998x10 m/s)=1.55><10,7 m=155 nm.
AE 8.00 eV

EVALUATE: This wavelength is much shorter than those of visible light.
IDENTIFY: If the given wave function is a solution to the Schrodinger equation, we will get an identity
when we substitute that wave function into the Schrédinger equation.

. . 2 . (nmx) _; . . .
SET UpP: We must substitute the equation ¥(x,?) = 7 sm(Tje E4M into the one-dimensional

Schrédinger equation —

YD |y = Ep),
dx?

2
. - . . ¥
EXECUTE: Taking the second derivative of W¥(x,¢) with respect to x gives % (nLﬂj W(x,1).
X

7w dzl//(x) n* (nr)
Substituting this result into — Ey. ———=+U(x)y(x)=Ey(x), we get Z—(Tj Y(x,t)=E¥Y(x,1)
m m

2
which gives E, = ;—(%) , the energies of a particle in a box.
m

EVALUATE: Since this process gives us the energies of a particle in a box, the given wave function is a
solution to the Schrodinger equation
IDENTIFY: Find x where ¥ is zero and where it is a maximum.

2 . (mx
SET UP: = [—sin| — |.
4] \/; [ I j

EXECUTE: (a) The wave function for »=1 vanishes only at x=0 and x=L intherange 0<x< L.
(b) In the range for x, the sine term is a maximum only at the middle of the box, x = L/2.

EVALUATE: (c) The answers to parts (a) and (b) are consistent with the figure.
IDENTIFY and SET UP: For the n=2 first excited state the normalized wave function is given by

2 2 2 . 2 .
Eq. (40.35). y,(x)=,|= sm( ij 7 (x)|2 dx = Zsm2 (%) dx. Examine |y, ()c)|2 dx and find where
it is zero and where it is maximum.
EXECUTE: (a) |1//2|2 dx=0 implies sin (Z—ILDCJ =0

%:mﬂ, m=0,1,2, ...: x=m(L/2)

For m=0, x=0; for m=1, x=L/2; for m=2, x=1L
The probability of finding the particle is zero at x=0, L/2, and L.
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2 .. . . [ 27x
(b) |l//2| dx is maximum when sin o ==1
27mx
T: m(w/2), m=1,3,5,...; x=m(L/4)
For m=1, x=L/4; for m=3, x=3L/4
The probability of finding the particle is largest at x = L/4 and 3L/4.
(c) EVALUATE: The answers to part (a) correspond to the zeros of |l//| 2 shown in F igure 40.12 in the
textbook and the answers to part (b) correspond to the two values of x where |l//| 2 in the figure is maximum.
d’ : o
40.20. IDENTIFY: Evaluate d—gj and see if Eq. (40.25) is satisfied. (x) must be zero at the walls, where U — oo.
X
d . d .
SET UP: —sinkx = kcoskx. —coskx =—ksinkx.
dx dx
d’y 2 - 2 _ p2m
EXECUTE: (a) 7 =—k“y, and for ¥ to be a solution of Eq. (40.25), k= Eh_2
X
(b) The wave function must vanish at the rigid walls; the given function will vanish at x=0 for any £,
but to vanish at x =L, kL = nz for integer n.
2252
n°rwh nrw . . .
EVALUATE: From Eq. (40.31), E, = ﬁ’ so k, = A and y = Asinkx is the same as y, in
m
Eq. (40.32), except for a different symbol for the normalization constant
40.21.  (a) IDENTIFY and SET UP: = Acoskx. Calculate d l//z/dx2 and substitute into Eq. (40.25) to see if this
equation is satisfied.
o d*y
EXECUTE: Eq. (40.25): — =FEy
87°m dx?
d . .
v A(—ksin kx) = — Ak sin kx
dx
dz
Y k(kcosk) = — A4k coskx
dx
. h? 5
Thus Eq. (40.25) requires — (—Ak* coskx) = E(Acoskx).
87°m
2,2
2mE 2mE
This says Wk =E; k= me _Nem
87%m (h/27) n
2mE
w= Acoskx is a solution to Eq. (40.25) if k = ="
(b) EVALUATE: The wave function for a particle in a box with rigid walls at x=0 and x =L must
satisfy the boundary conditions =0 at x=0 and =0 at x=L. (0)= Acos0= A4, since cosO=1.
Thus ¥ isnot 0 at x =0 and this wave function isn’t acceptable because it doesn’t satisfy the required
boundary condition, even though it is a solution to the Schrédinger equation.
40.22. IDENTIFY: The energy levels are given by Eq. (40.31). The wavelength A of the photon absorbed in an

. o . h
atomic transition is related to the transition energy AE by A= EC
SET UP: For the ground state n =1 and for the third excited state n =4.
EXECUTE: (a) The third excited state is n =4, so
2 15(6.626x1074 I - 5)?

AE = (4> -1) h ~= = 5 =5.78x107"7 J=361eV.
8mL*  8(9.11x107! kg)(0.125x10™° m)
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—34 8
by 4= e _(6:63x107 3 s)(31.70><10 W)
AE 5.78x1077 1

EVALUATE: This photon is an x ray. As the width of the box increases the transition energy for this
transition decreases and the wavelength of the photon increases.

40.23. IDENTIFY and SETUP: A= ﬁ

h
p B 2mE’

The energy of the electron in level # is given by Eq. (40.31).

W h _ _
EXECUTE: (a) Ej=—— = 4 =———=2L=2(3.0x10""" m)=6.0x10""" m. The wavelength
8mL 2mh?/8m1*
63x10734 J. _
is twice the width of the box. p, = D _(663XI0T9) g2 kg - m/s.

A 60x10""m
4h? 10 _ .
b) E,= 87 = A, =L=3.0x10"" m. The wavelength is the same as the width of the box.
m

h i}
py=—=2p =22x10"* kg - mys.
A

2

h
(c) E5= .

Ve > 4= %L =2.0x107'" m. The wavelength is two-thirds the width of the box.
m

py=3p; =3.3x1072* kg-my/s.

th state, p, =np;.

EVALUATE: In each case the wavelength is an integer multiple of A/2. In the n
40.24. IDENTIFY: To describe a real situation, a wave function must be normalizable.

SET Up: |l//12 dV is the probability that the particle is found in volume dV. Since the particle must be

somewhere, y must have the property that “ 1/112d V=1 when the integral is taken over all space.

EXECUTE: (a) In one dimension, as we have here, the integral discussed above is of the form

|7 Jweofax=1.

2ax |
ear

=0, Hence this wave

(b) Using the result from part (a), we have J.m (™) dx = I L 5
oo oo a

—oo

function cannot be normalized and therefore cannot be a valid wave function.
(c) We only need to integrate this wave function of 0 to o because it is zero for x < 0. For normalization we

o

2 2

A A
=—, which gives — =1, so 4=+/2b.
2 TNV oy

P g [0 b2 g [ g2 -2, A
have 1=~ [yf*dx= [ "(de ™ dr=[ " 4% dv=""

EVALUATE: If b were negative, the given wave function could not be normalized, so it would not be allowable.
2 12

40.25. IDENTIFY: Compare _2_d L
m

F + Uy to Ey and see if there is a value of k for which they are equal.
X

d* . .
SET UP: —251nkx = —k?sin k.

dx
2 2
EXECUTE:  (a) Eq. (40.23): id—g’ +Uy=Ey.
2m dx
-n? d* n’k? n’k?
Left-hand side: ———-(A4sinkx)+UyAsinkx = Asinkx +UyAsinkx =| ——+ U, |y. But
2m dx? m 2m
2k2 2:2

T +Uy>Uy>E if k isreal But + U, should equal E. This is not the case, and there is no k
m

for which this |l//|2 is a solution.
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n*k?
(b) If E>U,, then 2 +U, = E is consistent and so i = Asin kx is a solution of Eq. (40.23) for this case.
m
EVALUATE: For a square-well potential and E <U,, Eq. (40.23) with U =U,, applies outside the well
and the wave function has the form of Eq. (40.40).
hoo :
40.26. IDENTIFY: A=—. pisrelatedto Eby E = L
P 2m
SETUP: For x>L, U=U,. For 0<x<L, U=0.
h
EXECUTE: For O<x<L, p=~2mE =,/2m(3U,) and 4, =————. For x> L,
\2m(3U,)
p= \/2m(E -Uy) = \/Zm(ZUO) and Ay, = h = h . Thus, the ratio of the
2m(E-Uy)  /2m(2U,)
\2m(3U,)
wavelengths is Ao _ N2mBYy) \/7
Ain 2m(2U0
EVALUATE: For x> L some of the energy is potential and the kinetic energy is less than it is for
0< x< L, where U =0. Therefore, outside the box p is less and A is greater than inside the box.
40.27. IDENTIFY: Figure 40.15b in the textbook gives values for the bound state energy of a square well for
which Uy =6E| pw-
252
z°h
SETUP: E|_ =
DW=
n*h?
EXECUTE:  E =0.625E, 1y =0.625—— E; =2.00eV =3.20x10"" J
2mL
0.625 "2
L=nh — = =3.43x107"" m
2(9.109x107"" kg)(3.20x107°" J)
EVALUATE: As L increases the ground state energy decreases.
40.28. IDENTIFY: The energy of the photon is the energy given to the electron.
SET UP: Since Uy =6E pyw we can use the result E; =0.625E| |y from Section 40.4. When the
electron is outside the well it has potential energy U, so the minimum energy that must be given to the
electronis Uy —E; =5.375E pw-
EXECUTE: The maximum wavelength of the photon would be
. he he _ 8mI’c  8(9.11x107" kg)(1.50x10™ m)*(3.00 x 10° m/s)
Up—E,  (5375)(h*/8mL?*) (5.375)h (5.375)(6.63x1073* J-5)
=1.38x10° m.
EVALUATE: This photon is in the infrared. The wavelength of the photon decreases when the width of the
well decreases.
d* 2mE
40.29. IDENTIFY: Calculate d_g/ and compare to _;ln_z v.
X

SET Up: isinkx = kcoskx. icoskx = —ksinkx.
dx dx

2mE

. E
EXECUTE: Eq. (40.37): = A4sin x+ Bcos

d? 2mE\ . N2mE 2mE 2mE _ -2mE . o
av_ —A( m jsm n x—B( m jcos M = (w). This is Eq. (40.38), so this y is a
dx* n? n n? n n?

solution.

EVALUATE: ¥ in Eq. (40.38) is a solution to Eq. (40.37) for any values of the constants 4 and B.

X.
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40.30.

40.31.

40.32.

40.33.

IDENTIFY: The longest wavelength corresponds to the smallest energy change.
2

SET Up: The ground level energy level of the infinite well is E| pw 287’
m

and the energy of the
photon must be equal to the energy difference between the two shells.

EXECUTE: The 400.0 nm photon must correspond to the n=1 to n =2 transition. Since Uy =6E|_ |pw,

we have E, =2.43E| pw and E; =0.625E,_;pyw. The energy of the photon is equal to the energy

2
difference between the two levels, and E_jpyw = 877 which gives
m

h 1.805 ° . ,
E,=E,-E = 70 =(2.43-0.625)E 1pw = W Solving for L gives

I [(1.805)hA  |(1.805)(6.626 x107>* J-5)(4.00x10™" m) 4.68%10-10 m = 0.468 nm
8mc 8(9.11x107! kg)(3.00x 10® m/s) ' ' '

EVALUATE: This width is approximately half that of a Bohr hydrogen atom.

IDENTIFY: Find the transition energy AE and set it equal to the energy of the absorbed photon. Use

E = hc/A, to find the wavelength of the photon.

SETUP: U, =6E py, asinFigure 40.15 in the textbook, so E; =0.625E| pw and E; =5.09E| pw
242

In this problem the particle bound in the well is a proton, so m =1.673x 1077 kg.

T
with E;_ = .
1-1IDW )

°n? 72(1.055%107% J-5)2
2mI?  2(1.673x10727 kg)(4.0x107"° m)
is AE=E;—E; =(5.09—0.625)E, 1w = 4465E, ;pw. AE=4.465(2.052x1072 J)=9.162x107'2 J
The wavelength of the photon that is absorbed is related to the transition energy by AE = hc/A, so

12 he _ (6.626x 10734 J-5)(2.998 x 10% m/s)
AE 9.162x10712 J

EVALUATE: The wavelength of the photon is comparable to the size of the box.

2mUy—FE
AN
0

EXECUTE: E| pw = 5 =2.052 %107 J. The transition energy

=22x10""% m=22 fm.

IDENTIFY: The tunneling probability is 7 = Ge >**, with G =16—

E E _2«’2"’(U0_E)L
T=16—|1-—|le h .
U\ Uy

SETUP: U, =30.0x10% eV, L=2.0x10"" m, m =6.64x107>" kg.
EXECUTE: (a) Uy—E=1.0x10°% eV (E=29.0x10° eV), T =0.090.

(b) If Uy— E=10.0x10° eV (E =20.0x10° eV), T =0.014.

EVALUATE: T'is less when Uy—E s 10.0 MeV than when U, —E is 1.0 MeV.

IDENTIFY: The tunneling probability is 7 = léi{l —ﬁje” 2mUo=E)/h,
0 0

SET Up: £ _60eV

U, 11.0eV

EXECUTE: (a) L=0.80x10" m:

and E—-Uy=5eV=80x10"" 1.

11.0evV )| 11.0eV

(b) L=040x10" m: T=42x10""
EVALUATE: The tunneling probability is less when the barrier is wider.

T= 16[ 6.0eV J(l 6.0ev Je2(0‘80><109 m)2(9.11x 107" kg)B.0x 1077 1)/1.055x 107 T s _ 44%10°8
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40.34. IDENTIFY: The transmission coefficient is T :16U£0(1_U£0je_2 2m(Uo=E)L,
SETUP: E=5.0¢V, L=0.60x10" m, and m=9.11x107! kg
EXECUTE: (a) Uy=7.0eV=T=5.5X 1074,
(b) Uy=9.0 eV=T=18x10".
(€) Uy=13.0eV=>T=1.1x107".
EVALUATE: T decreases when the height of the barrier increases.
40.35. IDENTIFY and SET UP: Use Eq. (39.1), where K = p2/2m and E=K+U.
EXECUTE: A= hip=h/\2mK, so AWK is constant. /11\/?=12\/K7; A, and K| are for x> L where
=2U, and /12 and Kz are for 0<x < L where K, =E-U, =U,,.
K _
K, 2U0 2
EVALUATE. When the particle is passing over the barrier its kinetic energy is less and its wavelength is

larger.
40.36. IDENTIFY: The probability of tunneling depends on the energy of the particle and the width of the barrier.

SET UP: The probability of tunneling is approximately 7 = Ge L where G = 16£[1 - £j and

0 0
_\2mUy - E)

h

EXECUTE: G=16£ 1—£ =16
U\ Uy

50.0 eV - 50.0 eV —397
70.0 eV 70.0 eV

sz(U0 \/2(1 6710727 kg)(70.0 eV —50.0 eV)(1.60 x 1077 J/eV)

-1
=3 =9.8x10"" m
h (6.63x107" J-s)/2x

Solving T =Ge " for L gives

1 3.27
T

2(9.8x10°" m™) \0.0030

If the proton were replaced with an electron, the electron’s mass is much smaller so L would be larger.
EVALUATE: An electron can tunnel through a much wider barrier than a proton of the same energy.

Lzzim(c/r): j=3.6><10‘12 m=3.6 pm.
K

J2m(Uy—E
40.37. IDENTIFY and SET UP: The probability is T = Ae L with A:16£[1—£j and K‘=%.
0 0

E=32¢eV,Uy=41eV, L=0.25x% 10~ m. Calculate T.

EXECUTE: (a) A=16£ 1—£ 162 1—2 =2.741.
U U 41

_\2m(U, - E)

)
\/2(9 109%x1073! kg)(41 eV —32 eV)(1.602 x107 J/eV)
1.055x107* J-s

T = 4o 2KL (2.741)6—2(1.536><10“’ m™")(0.25x10” m) _ 2741768 —0.0013
(b) The only change in the mass m, which appears in x.

_\2m(U, - E)

n

=1.536x10'" m™!
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e \/2(1.673 x10727 kg)(41 eV =32 eV)(1.602x 107" J/eV)
1.055x1074 J -5
Then T = de—2¥L = Q2 741)8—2(6.584>< 10" m™)(0.25x 10 m) _ 2741673922 = 107143

EVALUATE: The more massive proton has a much smaller probability of tunneling than the electron does.
2

=6.584x10"" m™!

d . .
40.38. IDENTIFY: Calculate d_g/ and insert the result into Eq. (40.44).
by
d _ . d* _
SETUP: Lo = 265%™ and —e ot =(46°x* - 26)e 2
dx dx

2
EXECUTE: Let mk'/2hi= 0, and so % =-2x0y and a;{—g/ =(4x28%-25)y, and y is a solution of
X X

2
Eq. (40.44) if E=""5= %hx/k’/m = %ha)
m

EVALUATE: E = %ha) agrees with Eq. (40.46), for n=0.

40.39.  IDENTIFY and SET UP: The energy levels are given by Eq. (40.46), where @ = \/E .
m

EXECUTE: @= \/E = M =21.0 rad/s
m 0.250 kg

The ground state energy is given by Eq. (40.46):
E,= %ha)=%(l.055 x107* J-$)(21.0 rad/s) =1.11x 1072 J(1 eV/1.602x 107" 1) =6.93x107"% eV

1 1
En =(l’l+5jhw, E(n+1) =(n+l+5jha)

The energy separation between these adjacent levels is

AE=E,, —E,=ho=2E,=2(1.11x107 J)=222x107? 1 =1.39x10'* eV.

EVALUATE: These energies are extremely small; quantum effects are not important for this oscillator.
40.40. IDENTIFY: The energy of the absorbed photon must be equal to the energy difference between the two states.
he _ (4136 x107" eV -5)(2.998 x10° m/s) _

. 0.1433 eV. AE =ho.
A 8.65x107° m

SET UP and EXECUTE: AE =

E, _ho_0.1433eV
2
EVALUATE: The energy of the photon is not equal to the energy of the ground state, but rather it is the
energy difference between the two states.
40.41. IDENTIFY: We can model the molecule as a harmonic oscillator. The energy of the photon is equal to the
energy difference between the two levels of the oscillator.
SET UP: The energy of a photon is E, = hf = hc/A, and the energy levels of a harmonic oscillator are

=0.0717eV.

given by E, = n+l h E: n+l hao.
2 m 2

he  (6.63x107* J-5)(3.00x10% m/s)

EXECUTE: (a) The photon’s energy is E), = 7 S 8x100 =0.21eV.
OX m

27he _ h\/E Solving for £/,
A m

5,900 N/m.

(b) The transition energy is AE=E, . —E, =hw= h\/E , which gives
m

4r’c*m  4n*(3.00x10° m/s)*(5.6x107%° kg)
A2 (5.8x107° m)?
EVALUATE: This would be a rather strong spring in the physics lab.

we get k' =
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40.42. IDENTIFY: The photon energy equals the transition energy for the atom.
SET UP: According to Eq. (40.46), the energy released during the transition between two adjacent levels
is twice the ground state energy E; — E, =hw=2E;=11.2¢V.

EXECUTE: For a photon of energy E,

—34 8
Eehf oo 4= € o he _ (663X1071:5)3.00x10 ms)

fE  (112eV)(1.60x107" J/eV)
EVALUATE: This photon is in the ultraviolet.
40.43. IDENTIFY and SET UP: Use the energies given in Eq. (40.46) to solve for the amplitude 4 and maximum
speed v, of the oscillator. Use these to estimate Ax and Ap, and compute the uncertainty product

AxAp,.

max
EXECUTE: The total energy of a Newtonian oscillator is given by E = %k’A2 where &k’ is the force
constant and 4 is the amplitude of the oscillator. Set this equal to the energy E = (n + %) ho of an excited

kl
level that has quantum number n, where @ =, /—, and solve for A4: %k’A2 = (n + %) ho.
m

[@n+Dheo . . .
A= % The total energy of the Newtonian oscillator can also be written as E = %mvrznax. Set

. [2n+Dho
this equal to £ = (n+%)ha) and solve for v, : %mvﬁm = (n +%)ha) Vinax = % Thus the

maximum linear momentum of the oscillator is py. =MV =+/(2n+D)iimw. Now A/ V2 represents the

uncertainty Ax in position and that p . / V2 is the corresponding uncertainty A p, in momentum. Then
the uncertainty product is

_| 1 |@n+hho |( 1 :(2n+1)ha) ﬂ:(2n+1)ha) 1 _ h
AxApx—{\/E — j[ﬁ\/(2n+l)hma)j 5 \/; 5 (wj (2n+1)2.

EVALUATE: For n=0 this gives AxAp, =#/2, in agreement with the result derived in Section 40.5. The

uncertainty product AxAp, increases with n.
40.44. IpENTIFY: Compute the ratio specified in the problem.

SETUP: For n=0, A= "2 w=\/5
K m

pcaf :exp[_@ 2

A J = exp(—x/ mk’ %) =e¢ ' =0.368. This is consistent with what is

EXECUTE: (a)

2
lw (0 h
shown in Figure 40.27 in the textbook.
y(24)° Jmk
(b) H =exp —%’C(ZA)2 =exp [—x/ mk'4%} =¢™* =1.83x107% This figure cannot be read this
w(0)

precisely, but the qualitative decrease in amplitude with distance is clear.
EVALUATE: The wave function decays exponentially as x increases beyond x = A4.
40.45. IDENTIFY: We model the atomic vibration in the crystal as a harmonic oscillator.

. . . 1 }k’ 1
SET Up: The energy levels of a harmonic oscillator are given by E, = (n + Ejh —= (n + E]ha)
m

EXECUTE: (a) The ground state energy of a simple harmonic oscillator is

’ —34
By=tho=lp [ QOO TS | T2INM g 450022 5559107 ev
202 m 2 3.82x1072 kg

—34 8
(b) E, - E; =hw=2E,=0.0118 eV, so g2t (663X107J s)(3.2(:0><10 m's)
E 1.88x1072 J

=106 um
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©) E,.,,—E,=hw=2E,=0.0118 eV
EVALUATE: These energy differences are much smaller than those due to electron transitions in the
hydrogen atom.

40.46. IDENTIFY: For a stationary state, |‘P|2 is time independent.
SET UP: To calculate ¥ from ¥, replace i by —i.

EXECUTE: For this wave function, ¥* =y e + e, so
W[ =W = e+ yae e +yne ) =y iy i Yae T Lty

The frequencies @, and @, are given as not being the same, so |‘P| is not time-independent, and W is

not the wave function for a stationary state.
EVALUATE: If @ = ®,, then ¥ is the wave function for a stationary state.

40.47. IDENTIFY: We know the wave function of a particle in a box

('//

iBth

SET Up and EXECUTE: (a) W(x,1)= % v (x)e” S (x)e B

+iE\t/h + +iEst/h )

W (x,1) = % v (x)e % Wi (x)e

2 1 i(E,— t
¥ (x, 1) :E['//lzJf',"32""//1‘,”3(el(E3 R & {% YR+ 2u, cos([ 3 - 21 H
72 2,2 242
l//1=\/zsin[ﬂj. 1//3=\/Zsin(3ﬂj. E; = i and F, i hz, S0 E3—E1=@.
L L L L 2mI? 2mL mL
2
[ (x, t)| sm2 X\ 4 sin? 37x +2sin| 75 Jsin 3z cos 4 ht )
L L L L ml>
2
sin zx =sin z =1. sin 3zx =sin| — 37 =-1. |‘P(x t)| l—cos 4z ht .
L 2 L 2 ml?

_Ey—E, _4x’h
(b) ‘osc — 3 L= 2
h mL

EVALUATE: Note that AE =ho.

40.48. IDENTIFY: Carry out the calculations specified in the problem.

\/; —-x*/4a? )

SET UP: A standard integral is .[we_azkz cos(kx)dk =—e
0 2o
EXECUTE: (a) B(k)=¢ “% . B(0)=B,, =1. B(k,)= % = %R = In(1/2) = —oPk?
1
= kh = —ﬂln(z) = Wk‘
o
®) y)= ¢ coshdk = ﬁ(e—xz/““z
0 200

). w(x) is a maximum when x = 0.

) 2
© w(x,)= VZ hen e Z L, I In(1/2)= x, = 204In2 = w,
4o 2 4o

(d) w,w, —(hﬂjw;i( J_j(zwﬁp—m 2)—hln2—(21n2)h.
2r ) 7 2m\a

EVALUATE: The Heisenberg Uncertainty Principle says that AxAp, 27/2. If Ax=w, and Ap, =w,

then the uncertainty principle says w,w,, = 7/2. So our result is consistent with the uncertainty pr1nc1ple
since (2In2)h > h/2.
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40.49. IDENTIFY: Evaluate w(x)= j: B(k)coskx dk for the function B(k) specified in the problem.

SET UP: Icoskx dk =lsinkx.
X

ko

sin kx

0X

_sin kox

w 2
EXECUTE: (a) y(x)= jo B(k)cos kxdk = IOU [%J cos kxdk =
0

0 kox
(b) w(x) has a maximum value at the origin x = 0. /(x;) = 0 when kyxy = 750 x5 = kﬁ Thus the width of
0

. . 2 2 . -
this function w, =2x, = k—” If ky = Tﬂ, w, = L. B(k) versus k is graphed in Figure 40.49a. The graph of

0
w(x) versus x is in Figure 40.49b.

©1f kg =2, w, =2L.
L
EVALUATE: (d) w,w, =(—hwkj 27 By h. If Ax=w, and Ap, =w,, then the uncertainty
2 )\ ky ky ko

principle states that w,w, >—. For us, no matter what k is, w,w, = h, which is greater than 7/2.
2

P
P
~——— maximum
B(k)
1/ko
wx
/\ | x/ L
Ve
(@ ()
Figure 40.49

40.50. IDENTIFY: Ifthe given wave function is a solution to the Schrodinger equation, we will get an identity
when we substitute that wave function into the Schrédinger equation.

SET UP: The given function is y(x) = Ae™ | and the one-dimensional Schrédinger equation is

Py _
o UV = Ep().

EXECUTE: Start with the given function and take the indicated derivatives: W(x)= Ae™.

dy() e W) 20 ik 2 AW hdiy(x) R,
——~ = Aike'"™. ———= Ai“k =—Ak L ———==—k , ———T—2=—F .
o ike 12 i‘ke e 12 w(x) 4 . w(x)

Substituting these results into the one-dimensional Schrodinger equation gives
2,2

== V) + U () = E ().
m
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. , o , . n*k?
EVALUATE: w(x)=4 ¢ is a solution to the one-dimensional Schrodinger equation if E—-U, = .
m

/2 E- . . .. .
or k= M. (Since U, < E was given, k is the square root of a positive quantity.) In terms of the
h

particle’s momentum p: k = p/h, and in terms of the particle’s de Broglie wavelength A: k =27/A.
40.51. IDENTIFY: Let/refer to the region x <0 and let /] refer to the region x >0, so y;(x)= Ae™* 4 Bk
& o Vi _dvu

and y;(x)=Ce™". Set y;(0)=y;(0) an at x=0.
dx dx
SETUP: () = ike®T,
dx
EXECUTE: _ . L dyp dyy . o .
: y;(0)=yy,(0) gives A+B=C. e at x=0 gives ikjA—ikyB =ik,C. Solving
x X

L . . k- 2k
this pair of equations for B and C gives B = [kl ky JA and C =[ 2 jA.

1+ky Iy +ky
. . B?  (kj—ky)? . L
EVALUATE: The probability of reflection is R =—=-———-+==-. The probability of transmission is
A7 (k+ky)
Cc* Ak
=—5=——-L— Note that R+T =1.
A™ (k+ky)
n’h?
40.52. IDENTIFY: For a particle ina box, E, = -t
m

SETUr: AE,=E, -E,
+1)2=n® 2n+1 2 1 . .
EXECUTE: (a) R, = (ntl)” =n I —+—. This is never larger than it is for n =1, and R; =3.

n2 n2 n nZ

EVALUATE: (b) R, approaches zero as n becomes very large. In the classical limit there is no

quantization and the spacing of successive levels is vanishingly small compared to the energy levels.
Therefore, R, for a particle in a box approaches the classical value as n becomes very large.

2;2
Calculate AE for the

40.53.  IDENTIFY and SET UP: The energy levels are given by Eq. (40.31): E, = g 7k
m

transition and set AE = hc/A, the energy of the photon.

oo . 2 o
EXECUTE: (a) Ground level, n=1, E; = —- First excited level, n=2, E, = —. The transition
8mL 8mL

2

energy is AE=FE, —F, = . Set the transition energy equal to the energy hc/A of the emitted photon.

ml*

3h? 1o 8mcl”>  8(9.109x107" kg)(2.998 x10° m/s)(4.18 x10™° m)?
8mL* 3h 3(6.626x107>* J - 5) '
A=1.92x10" m=19.2 um.

This gives E =
A

2

(b) Second excited level has n=3 and E; = 89

5 The transition energy is
mL

2 2 2 2 2

4

AE=Ey—F, = 9h2_ h2: Shz. E: Sh2 ‘o =8mcL
8mL”™ 8mL”~ SmL~ A 8mL

EVALUATE: The energy spacing between adjacent levels increases with n, and this corresponds to a

shorter wavelength and more energetic photon in part (b) than in part (a).

%(19.2 m)=11.5 ym.
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40.54. IDENTIFY: The probability of finding the particle between x; and x, is J.xz | le dx.
X
2 . . 1 .
SET Up: For the ground state y; = \/;sm%. sin?@= %(l —co0s26). Icos ox dx =—sinox.
o

Li4
Li4 Li4
EXECUTE: (a) EJ. sin2 X xzzj 1 l—coszﬂ dx:l x—isin@ =1—L, which is
L7 L0 2 L

L L 2r L )y 4 2r
about 0.0908.
1 L. 2mx )
(b) Repeating with limits of L/4 and L/2 gives —| x ———sin—— =—+—, about 0.409.
L Y4 L )4 4 2r

(c) The particle is much likely to be nearer the middle of the box than the edge.
EVALUATE: (d) The results sum to exactly % Since the probability of the particle being anywhere in the
box is unity, the probability of the particle being found between x = L/2 and x=L is also % This means

that the particle is as likely to be between x =0and L/2 as it is to be between x=L/2and x = L.
(e) These results are consistent with Figure 40.12b in the textbook. This figure shows a greater probability

near the center of the box. It also shows symmetry of |l//12 about the center of the box.
40.55. IDENTIFY: The probability of the particle being between x; and x, is J.XZ\ l//\2 dx, where y is the
X

normalized wave function for the particle.
. . . 2 .
(a) SET UP: The normalized wave function for the ground state is y; = \/; sm(%).

EXECUTE: The probability P of the particle being between x=L/4 and x=3L/4 is

3L/4) 2 2 (3L/4 . o mx . T
P= L4 |y/1| dx=z g SO A dx. Let y=7mx/L;dx=(L/m)dy and the integration limits become

/4 and 37/4.
2(L\p3x/4 . 5 201 1.
=—| — sin“ydy=—| —y——sin2
L(ﬂ'}jﬂ/“ r ELJ} 4 y}
2137 - 1 . (3=n\ 1 . («&
P=—| —————sin| — |+ —sin| —
| 8 8 4 2 4 2

P =£(£—l(—l)+l(l)) = l+l =0.818. (Note: The integral formulafsinzydy = ly —lsin 2y was used.)
r\4 4 4 V4 2 4

3m/4

/4

2

. . . . 2 (2
(b) SETUP: The normalized wave function for the first excited state is y, = \/; sm(%).

Lo (A 2L o 2mx _ o ) )
EXECUTE: P= La |l//2| d ZIL/4 sin (T}ix. Let y=27x/L;dx =(L/2x)dy and the integration
limits become 7/2 and 37/2.

37/2
2( L 372, 1|1 1. 1
P=—| — I” 51n2ydy=— —y——sin2y =— Zz_z =0.500
L\ 2x ) 7/2 Tl 2° 4 o T4 4

(c) EVALUATE: These results are consistent with Figure 40.11b in the textbook. That figure shows that |y/|2

is more concentrated near the center of the box for the ground state than for the first excited state; this is
consistent with the answer to part (a) being larger than the answer to part (b). Also, this figure shows that for

the first excited state half the area under |l//|2 curve lies between L/4 and 3L/4, consistent with our answer
to part (b).

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



Quantum Mechanics 40-17

40.56. IDENTIFY: The probability is |W|2 dx, with y evaluated at the specified value of x.
SET UP: For the ground state, the normalized wave function is y; = 2/ sin(zx/L) .
EXECUTE: (a) (2/L)sin’(/4)dx = dx/L.
(b) (2/L) sin®(72/2)dx = 2dx/L
(¢) (2/L)sin’(37/4) = dx/L
EVALUATE: Our results agree with Figure 40.12b in the textbook. |l//12 is largest at the center of the box,

at x=L/2. |l//12 is symmetric about the center of the box, so is the same at x = L/4 as at x=3L/4.
40.57. IpENTIFY and SET UP: The normalized wave function for the n =2 first excited level is
v, = \/% sin (Z—?J P= |l,y(x)|2 dx is the probability that the particle will be found in the interval x to x + dx.

EXECUTE: (a) x=1L/4

i (53 O R R

P=(2/L)dx
(b) x=L/2

y(x)= %Sln((%j(én = \/%sin(zr) =0.

P=0
(¢c) x=3L/4

L LN\ 4 L 2 L
P=(2/L)dx

EVALUATE: Our results are consistent with the n =2 part of Figure 40.12 in the textbook. |1//|2 is zero at

the center of the box and is symmetric about this point.
40.58. IDENTIFY: The impulse applied to a particle equals its change in momentum.

SET Up: For a particle in a box, the magnitude of its momentum is p = hk = % (Eq. 40.29).

- - - hnzw _ h s .
EXECUTE: AP = Ppinal — Pinitial- | P| =k = % = ﬁ At x=0 the initial momentum at the wall is

_ hn 2 . . hl’l A
Dinitial = —El and the final momentum, after turning around, is pg., = +Zl. So,

Ap =+ﬂf—(—h—nf) = +hL—n; At x =L the initial momentum is p;;;a1 = +;’—Z; and the final

momentum, after turning around, is p = nf So, Ap= hnf hnf = hnf
’ & # 18 Prinal =75 8- 90 AP =T oL L
EVALUATE: The impulse increases with n.

40.59. IDENTIFY: Carry out the calculations that are specified in the problem.

2
SET Up: For a free particle, U(x) =0 so Schrodinger’s equation becomes d dl/;gx) = —i—’?E w(x).
EXECUTE: (a) The graph is given in Figure 40.59.
2 2.2
(b) For x<0: w(x)=e"™". M=I(e+”. M=Kze+’(x. So x? =—2—mE:E=—h K.
dx dx n? 2m
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2 2
(¢) For x>0: w(x)=e ", ) _ —Kxe ™. Yy k2e ™. So again k% = —z—ran > E= S .
dx dx fi 2m
-1’x?

Parts (b) and (c) show (x) satisfies the Schrodinger’s equation, provided E =
m

EVALUATE: (d)

# is discontinuous at x = 0. (That is, it is negative for x >0 and positive for x < 0.)
by

Therefore, this ¥ is not an acceptable wave function; dy/dx must be continuous everywhere, except
where U — oo,

()
1

| 1 1 1 x/K
-2 -1 0 1 2
Figure 40.59
40.60. IDENTIFY: We start with the penetration distance formula given in the problem.
SET UP: The given formula is 7= L
2mUy—E)
EXECUTE: (a) Substitute the given numbers into the formula:
h 1. 1074 7. _
7= - 055x10 " 1's =7.4x107" m
J2mUy - E) \/2(9.1 1x107%! kg)(20 eV —13 eV)(1.602x107"7 J/eV)
1.055x107* J.- .
(b) . & =1.44%107 m

77 =
\/2(1.67 %1072 kg)(30 MeV — 20 MeV)(1.602 x 10712 J/MeV)

EVALUATE: The penetration depth varies widely depending on the mass and energy of the particle.
40.61. IDENTIFY: Eq. (40.38) applies for 0 < x < L. Eq. (40.40) applies for x<0 and x>L. D=0 for x<0
and C=0 for x> L.

sz. isinloc:kcoslcx. icoslocz—ksinloc. ie’”“zl(e’”‘. ief Y= —xe
h dx dx dx dx

EXECUTE: (a) We set the solutions for inside and outside the well equal to each other at the well
boundaries, x=0and L.

x=0: Bsin(0)+ A=C = A=C, since we must have D =0 for x <0.

N2mEL + Acos N2mEL
h h

SETUP: Let k=

+De™*L since C=0 forx > L.

N2mE

This gives BsinkL + AcoskL = De™*", where k = P

x=1L: Bsin Ac

(b) Requiring continuous derivatives at the boundaries yields
x=0: % — kB cos(k - 0) — kdsin(k -0) = kB = xCe¥* = kB = xC.
X

x=L: kBcoskL — kAsinkL = —xDe”**

EVALUATE: These boundary conditions allow for B, C, and D to be expressed in terms of an overall
normalization constant 4.
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2m(Uy,—E
40.62. IDENTIFY: T =Ge >’ with G:16£[1—£j and Kk = m( ho ) soL= ! ln(zj

U\ U, ’ 2k \G)
SETUP: E=55eV,U,=10.0eV,m=9.11x107" kg, and T = 0.0010.

J200.11x107" ke)(4.5eV)(1.60x 107" J/eV)
(1.054%1074 J - 5)

and G =162V [1 >.5¢eV j=3.96,

EXECUTE: K =1.09%10"°" m™

10.0eV | 10.0eV

1 0.0010
- 0 "
2(1.09x10"" m™) 3.96
EVALUATE: The energies here are comparable to those of electrons in atoms, and the barrier width we
calculated is on the order of the diameter of an atom.
40.63. IDENTIFY and SET Up: When L is large, then e** is large and e~
sinh kL — kL. Consider both xL large and xL small limits.

j=3.8><10‘10 m=0.38 nm.

XL is small. When xL is small,

—1
(U, sinh xL)> }

EXECUTE: (a) T =|1+
4EUy-E)

KL —xL
sinh xL = ¢ ¢

-1
KL 2 2xL _
For xL>>1, sinh kL —*— and T —| 1+ Upe = 16E(U, E)2 _

2 16E(Uy~E) 16E(Uy — E)+UZe™™

For kL >>1, 16E(U, — E)+ Uge*** — UZe* ™

710G —E) 16[£][1 - ijem, which is Eq. (40.42).

Uge2K'L UO 0
L2m(U,-E
(b) kL= w. So kL >1 when L is large (barrier is wide) or U, — E is large. (£ is small

7
compared to U.)

© x 2mU, - E)
h

; kK becomes small as E approaches U,. For x small, sinhxL — xL and

—1 -1
22,2 2 g2
T— I+M = 1+U022m(U—0E)L (using the definition of «°).
4E(U, - E) 124E(U, - E)
1

272
Thus 7' —| 1+ 2U0L2m

Enh

-1
2 2
2FEL
Uy—E soﬂ—>E and 7T —| 1+ 2m
E 4h

.
But &2 = Z;n_ZE’ so T — {1 +(k7LJ 1 , as was to be shown.
EVALUATE: When xL is large Eq. (40.41) applies and T'is small. When E — U,,, T does not approach unity.

40.64. IDENTIFY: Compare the energy E of the oscillator to Eq. (40.46) in order to determine 7.
SET UP: At the equilibrium position the potential energy is zero and the kinetic energy equals the total
energy.
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1
EXECUTE: (a) E= Emv2 =[n+1/2)Jhw=[n+ (1/2)]hf, and solving for n,
1 >
—mv 2
2 _ 1 (1/2)(0.020 kg)(0.360 m/s)” 1 —13x10%
2 (6.63x10°*1.5)1.50Hz) 2 ’
(b) The difference between energies is i@ = hf = (6.63 X 107347. s)(1.50 Hz) =9.95 x 1074 J. This energy
is too small to be detected with current technology.
EVALUATE: This oscillator can be described classically; quantum effects play no measurable role.
40.65. IDENTIFY and SET UP: Calculate the angular frequency @ of the pendulum and apply Eq. (40.46) for the
energy levels.
2w 2 -1
EXECUTE: w=—= =4rs
T 0.500s
. 1 1 _ - _
The ground-state energy is E, = Eha)= 5(1.055 x1073 J-s)(4rs 1) =6.63x107>* J.
Ey=6.63x107* J(1eV/1.602x107"7 1) =4.14x107"° eV
E,= (n + ljha)
2
1
E, = n+1+5 hw
The energy difference between the adjacent energy levels is
AE=E, —E,=ho=2E,=133x10"" ] =830x107"° eV.
EVALUATE: These energies are much too small to detect. Quantum effects are not important for ordinary
size objects.
40.66. IDENTIFY: We model the electrons in the lattice as a particle in a box. The energy of the photon is equal
to the energy difference between the two energy states in the box.
2,2
SET UP: The energy of an electron in the n™ level is E,= Pt We do not know the initial or final
m
levels, but we do know they differ by 1. The energy of the photon, ic/A, is equal to the energy difference
between the two states.
. 63x107* J-5)(3.00x10°
EXECUTE: The energy difference between the levels is AE = he _(6.83x10771-5)3 ? 010" mfs) _
A 1.649x107" m
1.206x107'8 J. Using the formula for the energy levels in a box, this energy difference is equal to
h? n*
AE=|n*=(n-1) =(2n-1) .
[ ]SmLZ 8mL*
: . 1( AESmIL? 1( (1.206x107"® 1)8(9.11x107" kg)(0.500x10™° m)?
Solving for n gives n=— —;n+1 =— ( X DBO.11x 034 g)((2)5 107" m) +1|=3.
2 h (6.626x107" J-5)
The transition is from n=3 to n=2.
EVALUATE: We know the transition is not from the n =4 to the n=3 state because we let n be the
higher state and n —1 the lower state.
40.67. IDENTIFY: Ata maximum, the derivative of the probability function is zero.

SET UP and EXECUTE: p/(x) = Ce™® | where o= ZL; |l//(x)|2 = |C|2 2% At values of x where

2 2 2 2
|y/(x)|2 is a maximum, dll//dL)' =0 and d |W(2X)| <0. le(x)| — |C|2 (—20{x)8_2ax2 —0. Only
X dx dx
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2 2
solution is x =0. dz"”—(zxﬂ =|cf’ [—me‘mz +40tx 2 } At x=0, dz"/’—(zxﬂ =|Cf* (2e) <0, so
dx dx

|l//(x)|2 is a maximum at x = 0.
EVALUATE: There is only one maximum, at x =0, so the probability function peaks only there.

40.68. IDENTIFY: Ifthe given wave function is a solution to the Schrodinger equation, we will get an identity
when we substitute that wave function into the Schrodinger equation.

—a?x*)2

SET Up: The given wave function is ¥;(x) = Ajxe and the Schrodinger equation is

nod*w(x)  k'x?
————=—+—y(x)=E y(x).
YN S YO =Ey()
EXECUTE: (a) Start by taking the indicated derivatives: y;(x) = Alxefazxz/z.
d'/:;(x) PP T g TN,
X

d2 X 22 2.2 22
;//12( )=—A10(22xe PP _ g o2 (e T 4 A (e x)e T,
X

2
X

h d2 X h2

2m Z/xl’z( )Z"E[‘3az+ (@5 [y ().
2 ’ 2

Equation (40.44) is — ZL ddz/fgx) LK

2 w(x) = E y(x). Substituting the above result into that equation
m  dx

2 ’7 2 7
gives —h—[—3a2+(a2)2x2] V(%) + oy (x) = E yy(x). Since o2 =72 and = /k—, the
2m h m

2

’ 2 2 2
2)2 +£:_h_(m_a)j +ﬂ:0.

2
coefficient of x° is —h—(a
h 2

2m 2 2m

mow 3/4 4 1/4
a5 (7)
fi T

2.2 —oPx?

(¢) The probability density function |1//|2 is |y ()c)|2 = A'x"e
2 d|'/’1(x)|2 2 2 2.2, 2 w2 22 24 3 2 ot
At x=0, |y| =0. d—=A1 2xe ¥ + AfxT(—a"2x)e” T = Af2xe ¥ — A 20t T
x

2 2
o, O oy popl dmOL

At x
dx o dx

d2 2 2 2 2
% = 42270 4 AR 2x(~aP2n)e T — 42230 E — AR A (—aP2x)e
X

d? X 2
|Z]§ )| =A122e_a2x2 _A124x20{28_a2x2 —A126x2052€_“2x2 +A128x4(0{2)ze_“2x2. At x=0,
X

2
d* |y (x L L ..
% >0. So at x=0, the first derivative is zero and the second derivative is positive. Therefore,
X

d? ?
the probability density function has a minimum at x =0. At x= il, %
o x

first derivative is zero and the second derivative is negative. Therefore, the probability density function has

1
<0. Soat x=x—, the
o

maxima at x =+—, corresponding to the classical turning points for » =0 as found in the previous question.
o
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2
EVALUATE:  ;(x) = Axe " is a solution to Eq. (40.44) if —;‘—(—3052)%@) = E yy(x) or
m

2.2
E= 3?; “ - ?)hTa) E = %Tw corresponds to n =1 in Equation (40.46).
m

40.69. IDENTIFY: For a standing wave in the box, there must be a node at each wall and n(%) =L

SET UP: p=£ so mv=ﬁ
A A
2 2 242
EXECUTE: (a) For a standing wave, nA=2L, and E, = P _ M =2 L .
2m 2m 8mI?

(b) With L=a,=0.5292x10""" m, £, =2.15x107"7 J =134 eV.

EVALUATE: For a hydrogen atom, E, is proportional to 1/n® sothisisa very poor model for a hydrogen

atom. In particular, it gives very inaccurate values for the separations between energy levels.
40.70.  IDENTIFY and SET UP: Follow the steps specified in the problem.

EXECUTE: (a) As with the particle in a box, w(x)= 4 sin kx, where 4 is a constant and k> =2mE/n>.
Unlike the particle in a box, however, £ and hence E do not have simple forms.

(b) For x> L, the wave function must have the form of Eq. (40.40). For the wave function to remain finite
as x — oo, C' =0. The constant K2 = 2m(U, — E)/h, as in Eq. (40.40).

(¢) At x=L, Asin kL = De”*" and kA4 cos kL = —xDe”*". Dividing the second of these by the first gives
k cot kL = —k, a transcendental equation that must be solved numerically for different values of the length
L and the ratio E/U,,.

cos(kL)

EVALUATE: When Uy — o, K — o0 and —
sin(kL)

— oo, The solutions become & = nL_”’ n=1,2,3,..., the
same as for a particle in a box.
40.71.  IDENTIFY: Require w(—L/2)=w(L/2)=0.
2
k=2—ﬂ, p=ﬁ and E=2—.
A A 2m
EXECUTE: (a) (x)=Asin kxand w(-L/2)=0=w(+L/2)

=0= Asin[%j = HhL

SeET Up:

anr_2m
L A
2 2,2 2,2
=L, Jhonh g Ptk Qn)h
n A L 2m  2ml*  8mI?
(b) w(x)=Acoskxandw(-L/2)=0=w(+L/2)

=nrt=k=

,wheren=1,2...

= 0=Acos| L) K _0p iy F o g = GntDT 27
2 2 2 L A
A= 2L = p, = Q2n+Dh
2n+1) 2L
2,2
AL R
8mL
(¢) The combination of all the energies in parts (a) and (b) is the same energy levels as given in
2,2
n°h

Eq. (40.31), where E, = .
% (4031) " 8ml?

EVALUATE: (d) Part (a)’s wave functions are odd, and part (b)’s are even.
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40.72.  IDENTIFY and SET UP: Follow the steps specified in the problem.

2
p h h
EXECUTE: E=K+U(x)=—+U(x)= p=2m(E-U(x)). 1=—= Ax) =—F—m—m-—.
(@ (x) om ()= p=+2m( (x)) » (x) e U0
(b) As U(x) gets larger (i.e., U(x) approaches E from below—recall k >0), E —U(x)
gets smaller, so A(x) gets larger.
(¢) When E=U(x), E-U(x)=0,50 A(x) — eo.
b dx dx 1 ¢b n b hn
= =— 2m(E-U dx=— 2m(E-U dx=—.
(@ I T L W mE—UG) L m( (x)) dx ;= L m( (x)) dx >

(e) U(x)=0for 0 < x < L with classical turning points at x =0 and x = L. So,

j 2mE-U() j 2mEdx = 2mEj()de=\/2mEL. So, from part (d),

2.2
szL:h_":E:L(h_”j _hn
2 2m\ 2L 8mI?

EVALUATE: (f) Since U(x)=0 in the region between the turning points at x =0 and x = L, the result is

the same as part (e). The height U, never enters the calculation. WKB is best used with smoothly varying

potentials U (x).
40.73.  DENTIFY: Perform the calculations specified in the problem.
SETUP: U(x)=1kn?

2E
K

. . 1
EXECUTE: (a) At the turning points E = Ek’x%P = xpp =%

+2E/K

1 72 _ nh . . s
(b) I ER 2m£E —Ekx jdx =5 To evaluate the integral, we want to get it into a form that matches

. . 1, / , 2 E ; |2F
the standard integral given. | |2m E——kx2 2mE —mk'x* =Im R =~/mk e

Letting A% =

s / ,db+2E
k’ k’

= \/mk'jj A2 —x% dx= 2_‘n21k, |:x\/A2 — x> + A% arcsin [| |ﬂ

_\/—{ 2 PE_2E 2E ( 2E/kﬂ o 2

e )

Using WKB, this is equal to fn , SO E(ﬂ— h— Recallw= \/E, so E = La)n = hon.
2 k’ 2 m 2z

b

. . 7 1
EVALUATE: (c) We are missing the zero-point-energy offset of Tw [recall E= ha)(n + ED It

underestimates the energy. However, our approximation isn’t bad at all!
40.74.  IDENTIFY and SET UP: Perform the calculations specified in the problem.

. . E
EXECUTE: (a) At the turning points E = A|xTP| = X1p = iz.

+E/A E/d
() j ElA 2m(E - A|x|)dx = zjo \/m dx.Let y=2m(E — Ax) =

E
dy =—2mA dx when x = VE y=0,and when x =0, y=2mkE. So
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E 0
= 1 (o0 2 . - h
2! A 2m(E — Ax)dx = ——J. V2gy=——2_332 = —(2mE)3/2. Using WKB, this is equal to o
0 mA °2mE 3mA omg  3mA 2
2/3
So, L(sz)yz:h_an:L(M w23
3mA 2 2m 4

EVALUATE: (c) The difference in energy decreases between successive levels. For example:
123 Z 023 21223 _1213 2 0.59.33/2 _ 232 — 0 49
e Asharp o step gave ever-increasing level differences (~ n?).

e A parabola (~ xz) gave evenly spaced levels (~ n).

e Now, a linear potential (~ x) gives ever-decreasing level differences (~ n?3 ).

Roughly speaking, if the curvature of the potential (~ second derivative) is bigger than that of a parabola,
then the level differences will increase. If the curvature is less than a parabola, the differences will
decrease.
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