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 40.1. IDENTIFY:   Using the momentum of the free electron, we can calculate k and ω  and use these to express 
its wave function. 
SET UP:   ( , ) ,ikx i tx t Ae e ω−Ψ =  / ,k p= =  and 2/2 .k mω = =  

EXECUTE:   
24

10 1
34

4.50 10  kg m/s 4.27 10  m .
1.055 10  J s

pk
−

−
−

× ⋅= = − = − ×
× ⋅=

 
2 34 10 1 2

17 1
31

(1.055 10  J s)(4.27 10  m ) 1.05 10  s .
2 2(9.108 10  kg)
k
m

ω
− −

−
−

× ⋅ ×= = = ×
×

=  
10 1 17 1[4.27 10  m ) [1.05 10  s ]( , ) .i x i tx t Ae e

− −− × − ×Ψ =  
EVALUATE:   The wave function depends on position and time. 

 40.2. IDENTIFY:   Using the known wave function for the particle, we want to find where its probability function 
is a maximum. 
SET UP:   2 2 2 4 2 4( , ) [ ][ ].ikx i t ikx i t ikx i t ikx i tx t A e e e e e e e eω ω ω ω− − − + − +Ψ = − −  

2 2 2( 3 ) ( 3 )( , ) (2 [ ]) 2 (1 cos( 3 )).i kx t i kx tx t A e e A kx tω ω ω− − + −Ψ = − + = − −  

EXECUTE:   (a) For 0,t =  2 2( , ) 2 (1 cos( )).x t A kxΨ = −  2( , )x tΨ  is a maximum when cos( ) 1kx = −  and 

this happens when (2 1) , 0,1, .kx n nπ= + = …  2( , )x tΨ  is a maximum for 3, , etc.x
k k
π π=  

(b) 2t π
ω

=  and 3 6 .tω π=  2 2( , ) 2 (1 cos( 6 )).x t A kx πΨ = − −  Maximum for 6 , 3 ,... ,kx π π π− =  which 

gives maxima when 7 9, .x
k k
π π

=  

(c) From the results for parts (a) and (b), av
7 / / 3 .

2 /
k kv

k
π π ω

π ω
−

= =  2 1
av

2 1
v

k k
ω ω−=

−
 with 2 4 ,ω ω=  1 ,ω ω=  

2 2k k=  and 1k k=  gives av
3 .v
k
ω

=  

EVALUATE:   The expressions in part (c) agree. 
 40.3. IDENTIFY:   Use the wave function from Example 40.1. 

SET UP:   2 2
2 1 2 1( , ) 2 {1 cos[( ) ( ) ]}.x t A k k x tω ωΨ = + − − −  2 13 3 .k k k= =  

2
,

2
k
m

ω =
=  so 2 19 9 .ω ω ω= =  

2 2( , ) 2 {1 cos(2 8 )}.x t A kx tωΨ = + −  

EXECUTE:   (a) At 2 / ,t π ω=  2 2( , ) 2 {1 cos(2 16 )}.x t A kx πΨ = + −  2( , )x tΨ  is maximum for 

cos(2 16 ) 1.kx π− =  This happens for 2 16 0, 2 ,... .kx π π− =  Smallest positive x where 2( , )x tΨ  is a 

maximum is 8 .x
k
π

=  
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(b) From the result of part (a), av
8 / 4 .
2 /

kv
k

π ω
π ω

= =  2 1
av

2 1

8 4 .
2

v
k k k k

ω ω ω ω−= = =
−

  

EVALUATE:   The two expressions agree. 
 40.4. IDENTIFY:   We have a free particle, described in Example 40.1. 

SET UP and EXECUTE:   
2 2

2 1 2 1 2 1 2 1 av
av 2 1

2 1 2 1 2 1

( ) ( )( ) ( ) .
2 2 2

k k k k k k pv k k
k k m k k m k k m m

ω ω− − + −= = = = + =
− − −

= = =  

EVALUATE:   This is the same as the classical physics result, / / .v p m mv m v= = =  

 40.5. IDENTIFY and SET UP:   ( ) sin .x A kxψ =  The position probability density is given by 2 2 2( ) sin .x A kxψ =  
EXECUTE:   (a) The probability is highest where sin 1 so 2 / /2, 1, 3, 5,…kx kx x n nπ λ π= = = =   

/4, 1, 3, 5,… so /4, 3 /4, 5 /4,…x n n xλ λ λ λ= = =  

(b) The probability of finding the particle is zero where 2 0,ψ =  which occurs where sin 0kx =  and 
2 / , 0, 1, 2,…kx x n nπ λ π= = =   

/2, 0,1, 2,… so 0, /2, , 3 /2,…x n n xλ λ λ λ=  =   =     
EVALUATE:   The situation is analogous to a standing wave, with the probability analogous to the square of 
the amplitude of the standing wave. 

 40.6. IDENTIFY and SET UP:   2 ∗Ψ = Ψ Ψ  

EXECUTE:   sin ,tψ ω∗ ∗Ψ =  so 2 22 2sin sin .t tψ ψ ω ψ ω∗ ∗Ψ = Ψ Ψ = =  2Ψ  is not time-independent, so 
Ψ  is not the wavefunction for a stationary state. 
EVALUATE:   (cos sin )ie t i tωφψ ψ ω ωΨ = = +  is a wavefunction for a stationary state, since for it 

2 2 ,ψΨ =  which is time independent. 

 40.7. IDENTIFY:   Determine whether or not 
2 2

22
d U

m dx
ψ ψ− +

=
 is equal to ,Eψ  for some value of E. 

SET UP:   
2 2

1
1 1 122

d U E
m dx

ψ ψ ψ− + =
=  and 

2 2
2

2 2 222
d U E

m dx
ψ ψ ψ− + =

=  

EXECUTE:   
2 2

1 1 2 22 .
2

d U BE CE
m dx

ψ ψ ψ ψ− + = +
=  If ψ  were a solution with energy E, then 

1 1 2 2 1 2BE CE BE CEψ ψ ψ ψ+ = +  or 1 1 2 2( ) ( ) .B E E C E Eψ ψ− = −  This would mean that 1ψ  is a constant 
multiple of 2 1 2, and andψ ψ ψ  would be wave functions with the same energy. However, 1 2,E E≠  so this 
is not possible, and ψ  cannot be a solution to Eq. (40.23). 
EVALUATE:   ψ  is a solution if 1 2;E E=  see Exercise 40.9. 

 40.8. IDENTIFY:   Apply the Heisenberg Uncertainty Principle in the form /2.xx pΔ Δ ≥ =  
SET UP:   The uncertainty in the particle position is proportional to the width of ( ).xψ  

EXECUTE:   The width of ( )xψ  is inversely proportional to .α  This can be seen by either plotting the 
function for different values of α  or by finding the full width at half-maximum. The particle’s uncertainty 
in position decreases with increasing .α  
(b) Since the uncertainty in position decreases, the uncertainty in momentum must increase. 
EVALUATE:   As α  increases, the function ( )A k  in Eq. (40.19) must become broader. 

 40.9. IDENTIFY:   Determine whether or not 
2 2

22
d U

m dx
ψ ψ− +

=  is equal to .Eψ  

SET UP:   1ψ  and 2ψ  are solutions with energy E means that 
2 2

1
1 122

d U E
m dx

ψ ψ ψ− + =
=  and  

2 2
2

2 22 .
2

d U E
m dx

ψ ψ ψ− + =
=  
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EXECUTE:   Eq. (40.23): 
2 2

2 .
2

d U E
m dx

ψ ψ ψ−
+ =

=  Let 1 2A Bψ ψ ψ= +  

2 2

1 2 1 2 1 22 ( ) ( ) ( )
2

d A B U A B E A B
m dx

ψ ψ ψ ψ ψ ψ−
⇒ + + + = +

=  

2 2 2 2
1 2

1 1 2 22 2 0.
2 2

d dA U E B U E
m mdx dx

ψ ψψ ψ ψ ψ
⎛ ⎞ ⎛ ⎞

⇒ − + − + − + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =  But each of 1ψ  and 2ψ  satisfy 

Schrödinger’s equation separately so the equation still holds true, for any A or B. 
EVALUATE:   If 1ψ  and 2ψ  are solutions of the Schrodinger equation for different energies, then 

1 2B Cψ ψ ψ= +  is not a solution (Exercise 40.7). 
 40.10. IDENTIFY:   To describe a real situation, a wave function must be normalizable. 

SET UP:   2 dVψ  is the probability that the particle is found in volume dV. Since the particle must be 

somewhere, ψ  must have the property that 2 1dVψ =∫  when the integral is taken over all space. 

EXECUTE:   (a) For normalization of the one-dimensional wave function, we have 
0 02 2 2 2 2 2 2

0 0
1 ( ) ( ) .bx bx bx bxdx Ae dx Ae dx A e dx A e dxψ

∞ ∞ ∞− −
−∞ −∞ −∞

= = + = +∫ ∫ ∫ ∫ ∫  

02 2 2
2

0

1 ,
2 2

bx bxe e AA
b b b

∞−

−∞

⎧ ⎫⎪ ⎪= + =⎨ ⎬−⎪ ⎪⎩ ⎭
 which gives 1 –1/22 00 m 1.41 mA b −= = . =  

(b) The graph of the wavefunction versus x is given in Figure 40.10. 

(c) (i) 
5 00 m 5 00 m2 2 2
0 500 m 0

2 ,bxP dx A e dxψ
+ . + . −
− .

= =∫ ∫  where we have used the fact that the wave function is an 

even function of x. Evaluating the integral gives 
2 1

2 (0 500 m) 2 00
1

(2 00 m )( 1) ( 1) 0 865
2 00 m

bAP e e
b

−
− . − .

−
− − .

= − = − = .
.

 

There is a little more than an 86% probability that the particle will be found within 50 cm of the origin. 

(ii) 
2 10 02 2 2

1
2 00 m 1( ) 0.500

2 22(2 00 m )
bx bx AP Ae dx A e dx

b

−

−−∞ −∞

.
= = = = = =

.∫ ∫  

There is a 50-50 chance that the particle will be found to the left of the origin, which agrees with the fact 
that the wave function is symmetric about the y-axis. 

(iii) 
1 00 m 2 2
0 500 m

bxP A e dx
. −
.

= ∫  

1 12
2(2 00 m )(1 00 m) 2(2 00 m )(0 500 m) 4 21( ) ( ) 0 0585

2 2
A

e e e e
b

− −− . . − . . − −= − = − − = .
−

 

EVALUATE:   There is little chance of finding the particle in regions where the wave function is small. 
 

 

Figure 40.10 
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 40.11. IDENTIFY and SET UP:   The energy levels for a particle in a box are given by 
2 2

2 .
8n
n hE
mL

=  

EXECUTE:   (a) The lowest level is for 1,n =  and 
34 2

67
1 2

(1)(6.626 10  J s) 1.6 10  J.
8(0.20 kg)(1.3 m)

E
−

−× ⋅= = ×  

(b) 21
2

E mv=  so 
67

332 2(1.2 10  J) 1.3 10  m/s.
0.20 kg

Ev
m

−
−×= = = ×  If the ball has this speed the time it 

would take it to travel from one side of the table to the other is 
33

33
1.3 m 1.0 10  s.

1.3 10  m/s
t −= = ×

×
 

(c) 
2

1 2 12 , 4 ,
8

hE E E
mL

= =  so 67 67
2 1 13 3(1.6 10  J) 4.9 10  J.E E E E − −Δ = − = = × = ×  

(d) EVALUATE:   No, quantum mechanical effects are not important for the game of billiards. The discrete, 
quantized nature of the energy levels is completely unobservable. 

 40.12. IDENTIFY:   Solve Eq. (40.31) for L. 
SET UP:   The ground state has 1.n =  

EXECUTE:   
34

15
27 6 191

(6.626 10  J s) 6.4 10  m
8 8(1.673 10  kg)(5.0 10  eV)(1.602 10  J/eV)

hL
mE

−
−

− −

× ⋅
= = = ×

× × ×
 

EVALUATE:   The value of L we calculated is on the order of the diameter of a nucleus. 
 40.13. IDENTIFY:   An electron in the lowest energy state in this box must have the same energy as it would in the 

ground state of hydrogen. 

SET UP:   The energy of the thn  level of an electron in a box is 
2

2 .
8n
nhE
mL

=  

EXECUTE:   An electron in the ground state of hydrogen has an energy of 13 6 eV,− .  so find the width 
corresponding to an energy of 1 13 6 eV.E = .  Solving for L gives 

34
10

31 191

(6 626 10 J s) 1 66 10 m.
8 8(9 11 10 kg)(13 6 eV)(1 602 10 J/eV)

hL
mE

−
−

− −

. × ⋅= = = . ×
. × . . ×

 

EVALUATE:   This width is of the same order of magnitude as the diameter of a Bohr atom with the 
electron in the K shell. 

 40.14. IDENTIFY and SET UP:   The energy of a photon is .cE hf h
λ

= =  The energy levels of a particle in a box 

are given by Eq. (40.31). 

EXECUTE:   (a) 
8

34 18
9

(3.00 10 m/s)(6.63 10 J s) 1.63 10 J.
(122 10 m)

E − −
−

×= × ⋅ = ×
×

 
2

2 2
1 22 ( ).

8
hE n n
mL

Δ = −  

2 2 2 34 2 2 2
101 2

31 18
( ) (6.63 10  J s) (2 1 ) 3.33 10  m.
8 8(9.11 10  kg)(1.63 10  J)

h n nL
m E

−
−

− −
− × ⋅ −= = = ×

Δ × ×
 

(b) The ground state energy for an electron in a box of the calculated dimensions is 
2 34 2

19
2 31 10 2

(6.63 10  J s) 5.43 10  J 3.40 eV
8 8(9.11 10  kg)(3.33 10  m)

hE
mL

−
−

− −
× ⋅= = = × =

× ×
 (one-third of the original 

photon energy), which does not correspond to the 13.6 eV−  ground state energy of the hydrogen atom.  

EVALUATE:   (c) Note that the energy levels for a particle in a box are proportional to 2,n  whereas the 

energy levels for the hydrogen atom are proportional to 2
1 .
n

−  A one-dimensional box is not a good model 

for a hydrogen atom. 
 40.15. IDENTIFY and SET UP:   Eq. (40.31) gives the energy levels. Use this to obtain an expression for 2 1E E−  

and use the value given for this energy difference to solve for L. 
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EXECUTE:   Ground state energy is 
2

1 2 ;
8

hE
mL

=  first excited state energy is 
2

2 2
4 .

8
hE

mL
=  The energy 

separation between these two levels is 
2

2 1 2
3 .

8
hE E E

mL
Δ = − =  This gives 3

8
L h

m E
= =

Δ
 

34 10
31 19

36 626 10  J s 6 1 10  m 0 61 nm.
8(9 109 10  kg)(3 0 eV)(1 602 10  J/1 eV)

L − −
− −= . × ⋅ = . × = .

. × . . ×
 

EVALUATE:   This energy difference is typical for an atom and L is comparable to the size of an atom. 
 40.16. IDENTIFY:   The energy of the absorbed photon must be equal to the energy difference between the two states. 

SET UP and EXECUTE:   The second excited state energy is 
2 2

3 2
9 .
2

E
mL

π= =  The ground state energy is 

2 2

1 2 .
2

E
mL

π= =  1 1.00 eV,E =  so 3 9.00 eV.E =  For the transition 
2 2

2
4 .E
mL
πΔ = =  .hc E

λ
= Δ  

15 8
7(4.136 10  eV s)(2.998 10  m/s) 1.55 10  m 155 nm.

8.00 eV
hc
E

λ
−

−× ⋅ ×= = = × =
Δ

 

EVALUATE:   This wavelength is much shorter than those of visible light. 
 40.17. IDENTIFY:   If the given wave function is a solution to the Schrödinger equation, we will get an identity 

when we substitute that wave function into the Schrödinger equation. 

SET UP:   We must substitute the equation /2( , ) sin niE tn xx t e
L L

π −⎛ ⎞Ψ = ⎜ ⎟
⎝ ⎠

=  into the one-dimensional 

Schrödinger equation 
2 2

2
( ) ( ) ( ) ( ).

2
d x U x x E x

m dx
ψ ψ ψ− + ==  

EXECUTE:   Taking the second derivative of ( , )x tΨ  with respect to x gives 
22

2
( , ) ( , ).d x t n x t

Ldx
πΨ  ⎛ ⎞= − Ψ⎜ ⎟

⎝ ⎠
 

Substituting this result into 
2 2

2
( ) ( ) ( ) ( ),

2
d x U x x E x

m dx
ψ ψ ψ− + ==  we get 

22
( , ) ( , )

2
n x t E x t

m L
π⎛ ⎞ Ψ = Ψ⎜ ⎟

⎝ ⎠

=  

which gives 
22

,
2n

nE
m L

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

=  the energies of a particle in a box. 

EVALUATE:   Since this process gives us the energies of a particle in a box, the given wave function is a 
solution to the Schrödinger equation 

 40.18. IDENTIFY:   Find x where 1ψ  is zero and where it is a maximum. 

SET UP:   1
2 sin .x
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE:   (a) The wave function for 1n =  vanishes only at 0x =  and x L=  in the range 0 .x L≤ ≤  
(b) In the range for ,x  the sine term is a maximum only at the middle of the box, /2.x L=  
EVALUATE:   (c) The answers to parts (a) and (b) are consistent with the figure. 

 40.19. IDENTIFY and SET UP:   For the 2n =  first excited state the normalized wave function is given by  

Eq. (40.35). 2
2 2( ) sin .xx
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 2 2
2

2 2( ) sin .xx dx dx
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Examine 2
2( )x dxψ  and find where 

it is zero and where it is maximum. 

EXECUTE:   (a) 2
2 0dxψ =  implies 2sin 0x

L
π⎛ ⎞ =⎜ ⎟

⎝ ⎠
 

2 ,x m
L
π π=  0, 1, 2,  ;m = …  ( /2)x m L=  

For 0, 0;m x= =  for 1, /2;m x L= =  for 2,m x L= =  
The probability of finding the particle is zero at 0, /2,x L=  and L. 
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(b) 2
2 dxψ  is maximum when 2sin 1x

L
π⎛ ⎞ = ±⎜ ⎟

⎝ ⎠
 

2 ( /2), 1, 3, 5,  ; ( /4)x m m x m L
L
π π= = =…  

For 1, /4;m x L= =  for 3, 3 /4m x L= =  
The probability of finding the particle is largest at /4 and 3 /4.x L L=  
(c) EVALUATE:   The answers to part (a) correspond to the zeros of 2ψ  shown in Figure 40.12 in the 

textbook and the answers to part (b) correspond to the two values of x where 2ψ  in the figure is maximum. 

 40.20. IDENTIFY:   Evaluate 
2

2
d
dx

ψ  and see if Eq. (40.25) is satisfied. ( )xψ  must be zero at the walls, where .U → ∞  

SET UP:   sin cos .d kx k kx
dx

=  cos sin .d kx k kx
dx

= −  

EXECUTE:   (a) 
2

2
2 ,d k

dx
ψ ψ= −  and for ψ  to be a solution of Eq. (40.25), 2

2
2 .mk E=
=

 

(b) The wave function must vanish at the rigid walls; the given function will vanish at 0x =  for any ,k  
but to vanish at ,x L kL nπ= =  for integer .n  

EVALUATE:   From Eq. (40.31), 
2 2 2

2 ,
2n

nE
mL
π= =  so n

nk
L
π=  and sinA kxψ =  is the same as nψ  in  

Eq. (40.32), except for a different symbol for the normalization constant 
 40.21. (a) IDENTIFY and SET UP:   cos .A kxψ =  Calculate 2 2/d dxψ  and substitute into Eq. (40.25) to see if this 

equation is satisfied. 

EXECUTE:   Eq. (40.25): 
2 2

2 28
h d E

m dx
ψ ψ

π
− =  

( sin ) sind A k kx Ak kx
dx
ψ = − = −  

2
2

2 ( cos ) cosd Ak k kx Ak kx
dx

ψ
= − = −  

Thus Eq. (40.25) requires 
2

2
2 ( cos ) ( cos ).

8
h Ak kx E A kx

mπ
− − =  

This says 
2 2

2 ;
8
h k E

mπ
=  2 2

( /2 )
mE mEk

h π
= =

=
 

cosA kxψ =  is a solution to Eq. (40.25) if 2 .mEk =
=

 

(b) EVALUATE:   The wave function for a particle in a box with rigid walls at 0x =  and x L=  must 
satisfy the boundary conditions 0ψ =  at 0x =  and 0ψ =  at .x L=  (0) cos0 ,A Aψ = =  since cos0 1.=  
Thus ψ  is not 0 at 0x =  and this wave function isn’t acceptable because it doesn’t satisfy the required 
boundary condition, even though it is a solution to the Schrödinger equation. 

 40.22. IDENTIFY:   The energy levels are given by Eq. (40.31). The wavelength λ of the photon absorbed in an 

atomic transition is related to the transition energy EΔ  by .hc
E

λ =
Δ

 

SET UP:   For the ground state 1n =  and for the third excited state 4.n =  
EXECUTE:   (a) The third excited state is 4,n = so 

2 34 2
2 17

2 31 9 2
15(6.626 10 J s)(4 1) 5.78 10 J 361eV.

8 8(9.11 10 kg)(0.125 10 m)
hE
mL

−
−

− −
× ⋅Δ = − = = × =

× ×
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(b) 
34 8

17
(6.63 10  J s)(3.0 10  m/s) 3.44 nm

5.78 10  J
hc

E
λ

−

−
× ⋅ ×= = =

Δ ×
 

EVALUATE:   This photon is an x ray. As the width of the box increases the transition energy for this 
transition decreases and the wavelength of the photon increases. 

 40.23. IDENTIFY and SET UP:   .
2

h h
p mE

λ = =  The energy of the electron in level n is given by Eq. (40.31). 

EXECUTE:   (a) 
2

10 10
1 12 2 2

2 2(3.0 10  m) 6.0 10  m.
8 2 /8

h hE L
mL mh mL

λ − −= ⇒ = = = × = ×  The wavelength 

is twice the width of the box. 
34

24
1 10

1

(6.63 10  J s) 1.1 10  kg m/s.
6.0 10  m

hp
λ

−
−

−
× ⋅= = = × ⋅
×

 

(b) 
2

10
2 22

4 3.0 10  m.
8

hE L
mL

λ −= ⇒ = = ×  The wavelength is the same as the width of the box. 

24
2 1

2
2 2.2 10 kg m/s.hp p

λ
−= = = × ⋅  

(c) 
2

10
3 32

9 2 2.0 10  m.
38

hE L
mL

λ −= ⇒ = = ×  The wavelength is two-thirds the width of the box. 

24
3 13 3.3 10 kg m/s.p p −= = × ⋅  

EVALUATE:   In each case the wavelength is an integer multiple of /2.λ  In the thn  state, 1.np np=  
 40.24. IDENTIFY:   To describe a real situation, a wave function must be normalizable. 

SET UP:   2ψ  dV is the probability that the particle is found in volume dV. Since the particle must be 

somewhere, ψ  must have the property that 2 1dVψ =∫  when the integral is taken over all space. 

EXECUTE:   (a) In one dimension, as we have here, the integral discussed above is of the form 
2( ) 1.x dxψ

∞

−∞
=∫  

(b) Using the result from part (a), we have 
2

2 2( ) .
2

ax
ax ax ee dx e dx

a

∞
∞ ∞

−∞ −∞
−∞

= = = ∞∫ ∫  Hence this wave 

function cannot be normalized and therefore cannot be a valid wave function. 
(c) We only need to integrate this wave function of 0 to ∞  because it is zero for 0.x <  For normalization we 

have 
2 2 2

2 2 2 2
0 0

0

1 ( ) ,
2 2

bx
bx bx A e Adx Ae dx A e dx

b b
ψ

∞−∞ ∞ ∞ −
−∞

= = = = =
−∫ ∫ ∫-  which gives 

2
1,

2
A
b

=  so 2 .A b=  

EVALUATE:   If b were negative, the given wave function could not be normalized, so it would not be allowable. 

 40.25. IDENTIFY:   Compare 
2 2

22
d U

m dx
ψ ψ− +=  to Eψ  and see if there is a value of k for which they are equal. 

SET UP:   
2

2
2 sin sin .d kx k kx

dx
= −  

EXECUTE:     (a) Eq. (40.23): 
2 2

2 .
2

d U E
m dx

ψ ψ ψ− + ==  

Left-hand side: 
2 2 2 2 2 2

0 0 02 ( sin ) sin sin sin .
2 2 2

d k kA kx U A kx A kx U A kx U
m m mdx

ψ
⎛ ⎞− + = + = +⎜ ⎟⎜ ⎟
⎝ ⎠

= = =  But 

2 2

0 02
k U U E
m

+ > >=  if k  is real. But 
2 2

02
k U
m

+=  should equal .E  This is not the case, and there is no k 

for which this 2ψ  is a solution. 
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(b) If 0,E U>  then 

2 2

02
k U E
m

+ =
=

 is consistent and so sinA kxψ = is a solution of Eq. (40.23) for this case. 

EVALUATE:   For a square-well potential and 0,E U<  Eq. (40.23) with 0U U=  applies outside the well 
and the wave function has the form of Eq. (40.40). 

 40.26. IDENTIFY:   .h
p

λ =  p is related to E by 
2

.
2
pE U
m

= +  

SET UP:   For ,x L>  0.U U=  For 0 ,x L< <  0.U =  

EXECUTE:   For 0 ,x L< <  02 2 (3 )p mE m U= =  and in
0

.
2 (3 )

h
m U

λ =  For ,x L>  

0 02 ( ) 2 (2 )p m E U m U= − =  and out
0 0

.
2 ( ) 2 (2 )

h h
m E U m U

λ = =
−

 Thus, the ratio of the 

wavelengths is 0out

in 0

2 (3 ) 3 .
22 (2 )

m U
m U

λ
λ

= =  

EVALUATE:   For x L>  some of the energy is potential and the kinetic energy is less than it is for 
0 ,x L< <  where 0.U =  Therefore, outside the box p is less and λ  is greater than inside the box. 

 40.27. IDENTIFY:   Figure 40.15b in the textbook gives values for the bound state energy of a square well for 
which 0 1-1DW6 .U E=  

SET UP:   
2 2

1-1DW 2 .
2

E
mL

π= =  

EXECUTE:   
2 2

19
1 1-1DW 120.625 0.625 ; 2.00 eV 3.20 10 J.

2
πE E E
mL

−= = = = ×=

1/2
10

31 19
0.625 3.43 10  m.

2(9.109 10  kg)(3.20 10  J)
L π −

− −
⎛ ⎞

= = ×⎜ ⎟⎜ ⎟× ×⎝ ⎠
=  

EVALUATE:   As L increases the ground state energy decreases. 
 40.28. IDENTIFY:   The energy of the photon is the energy given to the electron. 

SET UP:   Since 0 1-1DW6U E=  we can use the result 1 1-1DW0.625E E=  from Section 40.4. When the 
electron is outside the well it has potential energy 0,U  so the minimum energy that must be given to the 
electron is 0 1 1-1DW5.375 .U E E− =  
EXECUTE:   The maximum wavelength of the photon would be 

2 31 9 2 8

2 2 34
0 1

6

8 8(9.11 10 kg)(1.50 10 m) (3.00 10 m/s)
(5.375)(5.375)( /8 ) (5.375)(6.63 10  J s)

1.38 10 m.

hc hc mL c
U E hh mL

λ
− −

−

−

× × ×
= = = =

− × ⋅

= ×

 

EVALUATE:   This photon is in the infrared. The wavelength of the photon decreases when the width of the 
well decreases. 

 40.29. IDENTIFY:   Calculate 
2

2
d
dx

ψ  and compare to 2
2 .mE ψ−
=

 

SET UP:   sin cos .d kx k kx
dx

=  cos sin .d kx k kx
dx

= −  

EXECUTE:   Eq. (40.37): 2 2
sin cos .

mE mE
A x B xψ = +

= =
 

2

2 2 2 2
2 2 2 2 2sin cos ( ).d mE mE mE mE mEA x B x

dx
ψ ψ−⎛ ⎞ ⎛ ⎞= − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠= == = =
 This is Eq. (40.38), so this ψ  is a 

solution. 
EVALUATE:   ψ  in Eq. (40.38) is a solution to Eq. (40.37) for any values of the constants A and B. 
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 40.30. IDENTIFY:   The longest wavelength corresponds to the smallest energy change. 

SET UP:   The ground level energy level of the infinite well is 
2

1-1DW 2 ,
8

hE
mL

=  and the energy of the 

photon must be equal to the energy difference between the two shells. 
EXECUTE:   The 400.0 nm photon must correspond to the 1n =  to 2n =  transition. Since 0 1-1DW6 ,U E=  
we have 2 1-1DW 1 1-1DW2 43  and 0 625 .E E E E= . = .  The energy of the photon is equal to the energy 

difference between the two levels, and 
2

1-1DW 2 ,
8

hE
mL

=  which gives 

2

2 1 1-1DW 2
1 805(2 43 0 625) .

8
hc hE E E E

mLγ λ
.= − ⇒ = . − . =  Solving for L gives 

34 7
10

31 8
(1 805) (1 805)(6 626 10  J s)(4 00 10  m)

4 68 10  m 0 468 nm.
8 8(9 11 10  kg)(3 00 10 m/s)

h
L

mc
λ − −

−
−

. . . × ⋅ . ×
= = = . × = .

. × . ×  
 

EVALUATE:   This width is approximately half that of a Bohr hydrogen atom. 
 40.31. IDENTIFY:   Find the transition energy EΔ  and set it equal to the energy of the absorbed photon. Use 

/ ,E hc λ=  to find the wavelength of the photon. 
SET UP:   0 1-1DW6 ,U E=  as in Figure 40.15 in the textbook, so 1 1-1DW0 625E E= .  and 3 1-1DW5 09E E= .  

with 
2 2

1-1DW 2 .
2

E
mL

π= =  In this problem the particle bound in the well is a proton, so 271 673 10  kg.m −= . ×  

EXECUTE:   
2 2 2 34 2

12
1-1DW 2 27 15 2

(1 055 10  J s) 2 052 10  J.
2 2(1 673 10  kg)(4 0 10  m)

E
mL

π π −
−

− −
. × ⋅= = = . ×

. × . ×
=

 The transition energy 

is 3 1 1-1DW 1-1DW(5 09 0 625) 4 465 .E E E E EΔ = − = . − . = .  12 124 465(2 052 10  J) 9 162 10  JE − −Δ = . . × = . ×  
The wavelength of the photon that is absorbed is related to the transition energy by / ,E hc λΔ =  so 

34 8
14

12
(6 626 10  J s)(2 998 10  m/s) 2 2 10  m 22 fm.

9 162 10  J
hc
E

λ
−

−
−

. × ⋅ . ×
= = = . × =

Δ . ×
 

EVALUATE:   The wavelength of the photon is comparable to the size of the box. 

 40.32. IDENTIFY:   The tunneling probability is 02

0 0

2 ( )
, with 16 1   and .L m U EE ET Ge G

U U
κ κ− ⎛ ⎞ −

= = − =⎜ ⎟
⎝ ⎠ =

 so 

02 2 ( )

0 0
16 1 .

m U E LE ET e
U U

− −
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

=  

SET UP:   6 15 27
0 30.0 10  eV, 2.0 10  m, 6.64 10  kg.U L m− −= × = × = ×  

EXECUTE:   (a) 6 6
0 1.0 10  eV ( 29.0 10 eV), 0.090.U E E T− = × = × =  

(b) If 6 6
0 10.0 10 eV ( 20.0 10 eV), 0.014.U E E T− = × = × =  

EVALUATE:   T is less when 0U E−  s 10.0 MeV than when 0U E−  is 1.0 MeV. 

 40.33. IDENTIFY:   The tunneling probability is 02 2 ( ) /

0 0
16 1 .L m U EE ET e

U U
− −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

=  

SET UP:   
0

6.0 eV
11.0 eV

E
U

=  and 19
0 5 eV 8.0 10 J.E U −− = = ×  

EXECUTE:   (a) 90.80 10  m:L −= ×  
9 31 19 342(0.80 10 m) 2(9.11 10 kg)(8.0 10 J) /1.055 10 J s 86.0 eV 6.0 ev16 1 4.4 10 .

11.0 eV 11.0 eV
T e

− − − −− × × × × ⋅ −⎛ ⎞⎛ ⎞
= − = ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) 90.40 10 m:L −= ×  44.2 10 .T −= ×  
EVALUATE:   The tunneling probability is less when the barrier is wider. 
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 40.34. IDENTIFY:   The transmission coefficient is 02 2 ( ) /

0 0
16 1 .m U E LE ET e

U U
− −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

=  

SET UP:   95.0 eV, 0.60 10  m,E L −= = ×  and 319.11 10  kgm −= ×  

EXECUTE:   (a) 4
0 7.0 eV 5.5 10 .U T −= ⇒ = ×  

(b) 5
0 9.0 eV 1.8 10 .U T −= ⇒ = ×  

(c) 7
0 13.0 eV 1.1 10 .U T −= ⇒ = ×  

EVALUATE:   T decreases when the height of the barrier increases. 
 40.35. IDENTIFY and SET UP:   Use Eq. (39.1), where 2/2K p m=  and .E K U= +  

EXECUTE:   / / 2 ,h p h mKλ = =  so Kλ  is constant. 1 1 2 2 ;K Kλ λ=  1λ  and 1K  are for x L>  where 

1 02K U=  and 2λ  and 2K  are for 0 x L< <  where 2 0 0.K E U U= − =  

1 2 0

2 1 0

1
2 2

K U
K U

λ
λ

= = =  

EVALUATE:   When the particle is passing over the barrier its kinetic energy is less and its wavelength is 
larger. 

 40.36. IDENTIFY:   The probability of tunneling depends on the energy of the particle and the width of the barrier. 

SET UP:   The probability of tunneling is approximately 2 ,LT Ge κ−=  where 
0 0

16 1E EG
U U

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 and 

02 ( )
.

m U E
κ

−
=

=
 

EXECUTE:   
0 0

50 0 eV 50 0 eV16 1 16 1 3 27.
70 0 eV 70 0 eV

E EG
U U

⎛ ⎞ . .⎛ ⎞= − = − = .⎜ ⎟ ⎜ ⎟. .⎝ ⎠⎝ ⎠
 

27 19
0 11 1

34
2 ( ) 2(1 67 10  kg)(70 0 eV 50 0 eV)(1 60 10  J/eV)

9 8 10  m
(6 63 10  J s)/2

m U E
κ

π

− −
−

−
− . × . − . . ×

= = = . ×
. × ⋅=

  

Solving 2 LT Ge κ−=  for L gives  

12
11 1

1 1 3 27ln( / ) ln 3 6 10  m 3 6 pm.
2 0 00302(9 8 10  m )

L G T
κ

−
−

.⎛ ⎞= = = . × = .⎜ ⎟.. × ⎝ ⎠
 

If the proton were replaced with an electron, the electron’s mass is much smaller so L would be larger. 
EVALUATE:   An electron can tunnel through a much wider barrier than a proton of the same energy. 

 40.37. IDENTIFY and SET UP:   The probability is 2 ,LT Ae κ−=  with 
0 0

16 1E EA
U U

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 and 02 ( )

.
m U E

κ
−

=
=

 

9
032 eV, 41 eV, 0 25 10  m.E U L −= = = . ×  Calculate T. 

EXECUTE:   (a) 
0 0

32 3216 1 16 1 2 741.
41 41

E EA
U U

⎛ ⎞ ⎛ ⎞= − = − = .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

02 ( )m U E
κ

−
=

=
 

31 19
10 1

34
2(9 109 10  kg)(41 eV 32 eV)(1 602 10  J/eV)

1 536 10  m
1 055 10  J s

κ
− −

−
−

. × − . ×
= = . ×

. × ⋅
 

10 1 92 2(1 536 10 m )(0 25 10 m) 7 68(2 741) 2 741 0 0013LT Ae e eκ − −− − . × . × − .= = . = . = .  
(b) The only change in the mass m, which appears in .κ  

02 ( )m U E
κ

−
=

=
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27 19
11 1

34
2(1 673 10  kg)(41 eV 32 eV)(1 602 10  J/eV)

6 584 10  m
1 055 10  J s

κ
− −

−
−

. × − . ×
= = . ×

. × ⋅
 

Then 
11 1 92 2(6 584 10 m )(0 25 10 m) 392 2 143(2 741) 2 741 10LT Ae e eκ − −− − . × . × − . −= = . = . =  

EVALUATE:   The more massive proton has a much smaller probability of tunneling than the electron does. 

 40.38. IDENTIFY:   Calculate 
2

2
d
dx

ψ  and insert the result into Eq. (40.44). 

SET UP:   
2 2

2x xd e xe
dx

δ δδ− −= −  and 
2 22

2 2
2 (4 2 )x xd e x e

dx
δ δδ δ− −= −  

EXECUTE:   Let /2 ,mk δ′ ==  and so 2d x
dx
ψ δψ= −  and 

2
2 2

2 (4 2 ,d x )
dx

ψ δ δ ψ= −  and ψ  is a solution of 

Eq. (40.44) if 
2 1 1/ .

2 2
E k m

m
δ ω= = =′

= = =  

EVALUATE:   1
2E ω= =  agrees with Eq. (40.46), for 0.n =  

 40.39. IDENTIFY and SET UP:   The energy levels are given by Eq. (40.46), where .k
m

ω ′=  

EXECUTE:   110 N/m 21 0 rad/s
0 250 kg

k
m

ω ′= = = .
.

 

The ground state energy is given by Eq. (40.46): 
34 33 19 15

0
1 1 (1 055 10  J s)(21 0 rad/s) 1 11 10  J(1 eV/1 602 10  J) 6 93 10  eV
2 2

E ω − − − −= = . × ⋅ . = . × . × = . ×=  

1 ,
2nE n ω⎛ ⎞= +⎜ ⎟

⎝ ⎠
=  ( 1)

11
2nE n ω+

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

=  

The energy separation between these adjacent levels is 
33 33 14

1 02 2(1 11 10  J) 2 22 10  J 1 39 10  eV.n nE E E Eω − − −
+Δ = − = = = . × = . × = . ×=  

EVALUATE:   These energies are extremely small; quantum effects are not important for this oscillator. 
 40.40. IDENTIFY:   The energy of the absorbed photon must be equal to the energy difference between the two states. 

SET UP and EXECUTE:   
15 8

6
(4.136 10  eV s)(2.998 10  m/s) 0.1433 eV.

8.65 10  m
hcE
λ

−

−
× ⋅ ×Δ = = =

×
 .E ωΔ = =  

0
0.1433 eV 0.0717 eV.

2 2
E ω= = ==  

EVALUATE:   The energy of the photon is not equal to the energy of the ground state, but rather it is the 
energy difference between the two states. 

 40.41. IDENTIFY:   We can model the molecule as a harmonic oscillator. The energy of the photon is equal to the 
energy difference between the two levels of the oscillator. 
SET UP:   The energy of a photon is / ,E hf hcγ λ= =  and the energy levels of a harmonic oscillator are 

given by 1 1 .
2 2n

kE n n
m

ω′⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =  

EXECUTE:   (a) The photon’s energy is 
34 8

6
(6 63 10  J s)(3 00 10  m/s) 0 21 eV.

5 8 10  m
hcEγ λ

−

−
. × ⋅ . ×= = = .

. ×
 

(b) The transition energy is 1 ,n n
kE E E
m

ω+
′Δ = − = == =  which gives 2 .c k

m
π
λ

′== =  Solving for ,k ′  

we get 
2 2 2 8 2 26

2 6 2
4 4 (3 00 10 m/s) (5 6 10  kg) 5,900 N/m.

(5 8 10  m)
c mk π π

λ

−

−
. ×  . ×′ = = =

. ×
 

EVALUATE:   This would be a rather strong spring in the physics lab. 
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 40.42. IDENTIFY:   The photon energy equals the transition energy for the atom. 
SET UP:   According to Eq. (40.46), the energy released during the transition between two adjacent levels 
is twice the ground state energy 3 2 02 11.2 eV.E E Eω− = = ==  
EXECUTE:   For a photon of energy ,E  

34 8

19
(6.63 10 J s)(3.00 10 m/s) 111 nm.

(11.2 eV)(1.60 10 J/eV)
c hcE hf
f E

λ
−

−
× ⋅ ×

= ⇒ = = = =
×

 

EVALUATE:   This photon is in the ultraviolet. 
 40.43. IDENTIFY and SET UP:   Use the energies given in Eq. (40.46) to solve for the amplitude A and maximum 

speed maxv  of the oscillator. Use these to estimate xΔ  and xpΔ  and compute the uncertainty product 
.xx pΔ Δ  

EXECUTE:   The total energy of a Newtonian oscillator is given by 21
2E k A= ′  where k ′  is the force 

constant and A is the amplitude of the oscillator. Set this equal to the energy ( )1
2E n ω= + =  of an excited 

level that has quantum number n, where ,k
m

ω ′=  and solve for A: ( )21 1
2 2 .k A n ω= +′ =  

(2 1) .nA
k

ω+
=

′
=  The total energy of the Newtonian oscillator can also be written as 21

max2 .E mv=  Set 

this equal to ( )1
2E n ω= + =  and solve for max:v  ( )21 1

max2 2 .mv n ω= + =  max
(2 1) .nv

m
ω+= =  Thus the 

maximum linear momentum of the oscillator is max max (2 1) .p mv n mω= = + =  Now / 2A  represents the 

uncertainty xΔ  in position and that max/ 2p  is the corresponding uncertainty xpΔ  in momentum. Then 
the uncertainty product is 

1 (2 1) 1 (2 1) (2 1) 1(2 1) (2 1) .
2 2 22 2x

n n m nx p n m n
k k

ω ω ωω
ω

⎛ ⎞+ + +⎛ ⎞ ⎛ ⎞Δ Δ = + = = = +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟′ ′ ⎝ ⎠⎝ ⎠⎝ ⎠

= = = ==  

EVALUATE:   For 0n =  this gives /2,xx pΔ Δ = =  in agreement with the result derived in Section 40.5. The 
uncertainty product xx pΔ Δ  increases with n. 

 40.44. IDENTIFY:   Compute the ratio specified in the problem. 

SET UP:   For 0,n =  .A
k
ω=
′
=  .k

m
ω ′=  

EXECUTE:   (a) 
2

2 1
2

( )
exp exp 0.368.

(0)

A mk A mk e
k

ψ ω
ψ

−⎛ ⎞′ ⎛ ⎞′= − = − = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ′⎝ ⎠⎝ ⎠=
 This is consistent with what is 

shown in Figure 40.27 in the textbook. 

(b) 
2

2 4 2
2

(2 )
exp (2 ) exp 4 1.83 10 .

(0)

A mk A mk e
k

ψ ω
ψ

− −⎛ ⎞′ ⎛ ⎞′= − = − = = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ′⎝ ⎠⎝ ⎠=
 This figure cannot be read this 

precisely, but the qualitative decrease in amplitude with distance is clear. 
EVALUATE:   The wave function decays exponentially as x increases beyond .x A=  

 40.45. IDENTIFY:   We model the atomic vibration in the crystal as a harmonic oscillator. 

SET UP:   The energy levels of a harmonic oscillator are given by 1 1 .
2 2n

kE n n
m

ω′⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =  

EXECUTE:   (a) The ground state energy of a simple harmonic oscillator is 
34

22 3
0 26

1 1 (1 055 10  J s) 12 2 N/m 9 43 10  J 5 89 10  eV
2 2 2 3 82 10  kg

kE
m

ω
−

− −
−

′ . × ⋅ .
= = = = . × = . ×

. ×
= =  

(b) 4 3 02 0 0118 eV,E E Eω− = = = .=  so 
34 8

21
(6 63 10  J s)(3 00 10  m/s) 106 m

1 88 10  J
hc
E

λ μ
−

−
. × ⋅ . ×= = =  

. ×
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(c) 1 02 0 0118 eVn nE E Eω+ − = = = .=  
EVALUATE:   These energy differences are much smaller than those due to electron transitions in the 
hydrogen atom. 

 40.46. IDENTIFY:   For a stationary state, 2Ψ is time independent. 

SET UP:   To calculate ∗Ψ  from ,Ψ  replace i by .i−  

EXECUTE:   For this wave function, 1 2
1 2 ,i t i te eω ωψ ψ∗ ∗ ∗Ψ = +  so 

1 2 1 2 1 2 2 12 ( ) ( )
1 2 1 2 1 1 2 2 1 2 2 1( )( ) .i t i t i t i t i t i te e e e e eω ω ω ω ω ω ω ω∗ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ− − − −∗ ∗ ∗ ∗ ∗ ∗Ψ = Ψ Ψ = + + = + + +  

The frequencies 1 2andω ω  are given as not being the same, so 2Ψ  is not time-independent, and Ψ  is 
not the wave function for a stationary state. 
EVALUATE:   If 1 2,ω ω=  then Ψ  is the wave function for a stationary state. 

 40.47. IDENTIFY:   We know the wave function of a particle in a box. 

SET UP and EXECUTE:   (a) 31 //
1 3

1 1( , ) ( ) ( ) .
2 2

iE tiE tx t x e x eψ ψ −−Ψ = + ==  

31 //
1 3

1 1( , ) ( ) ( ) .
2 2

iE tiE tx t x e x eψ ψ ++∗Ψ = + ==

3 1 3 12 ( ) / ( ) /2 2 2 2 3 1
1 3 1 3 1 3 1 3

1 1 [ ]( , ) [ ( )] 2 cos .
2 2

i E E t i E E t E E tx t e eψ ψ ψ ψ ψ ψ ψ ψ− − − ⎡ − ⎤⎛ ⎞Ψ = + + + = + + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
= =

=

1
2 sin .x
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 3
2 3sin .x
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 
2 2

3 2
9
2

E
mL

π= =  and 
2 2

1 2 ,
2

E
mL

π= =  so 
2 2

3 1 2
4 .E E
mL
π− = =  

2
2 2 2

2
1 3 3 4( , ) sin sin 2sin sin cos .x x x x tx t
L L L L L mL

π π π π π⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Ψ = + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

=  At /2,x L=  

sin sin 1.
2

x
L

π π⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 3 3sin sin 1.
2

x
L
π π⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

2
2

2
2 4( , ) 1 cos .tx t
L mL

π⎡ ⎤⎛ ⎞
Ψ = −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=  

(b) 
2

3 1
osc 2

4 .E E
mL
πω −= = =

=
 

EVALUATE:   Note that .E ωΔ = =  
 40.48. IDENTIFY:   Carry out the calculations specified in the problem. 

SET UP:   A standard integral is 
2 2 2 2/4

0
cos( ) .

2
k xe kx dk eα απ

α
∞ − −=∫  

EXECUTE:   (a) 
2 2

( ) .kB k e α−=  max(0) 1.B B= =  
2 2

h 2 2
h h

1( ) ln(1/2)
2

kB k e kα α−= = ⇒ = −  

h
1 ln(2) .kk w
α

⇒ = =  

(b) 
2 2 2 2/4

0
( ) cos ( ).

2
k xπx e kxdk eα αψ

α
∞ − −= =∫  ( )xψ  is a maximum when 0.x =  

(c) 
2 2
h

2
/4 h

h h2
1( ) when ln(1/2) 2 ln 2

4 2 4
x

x
π xx e x wαψ α
α α

− −= = ⇒ = ⇒ = =  

(d) 1 ln 2ln2 (2 ln2) (2ln 2) (2ln 2) .
2 2 2

k
p x x

hw h h hw w w α
π π α π π

⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=  

EVALUATE:   The Heisenberg Uncertainty Principle says that /2.xx pΔ Δ ≥ =  If xx wΔ =  and ,x pp wΔ =  

then the uncertainty principle says /2.x pw w ≥ =  So our result is consistent with the uncertainty principle 
since (2ln 2) /2.>= =  
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 40.49. IDENTIFY:   Evaluate 
0

( ) ( )cos  x B k kx dkψ
∞

= ∫  for the function ( )B k  specified in the problem. 

SET UP:   1cos  sin .kx dk kx
x

=∫  

EXECUTE:   (a) 
0

0 0
0 0 0 0 00

1 sin sin( ) ( )cos cos
k

k kx k xx B k kxdk kxdk
k k x k x

ψ
∞ ⎛ ⎞

= = = =⎜ ⎟
⎝ ⎠

∫ ∫  

(b) ( )xψ  has a maximum value at the origin 0 0 0 0
0

0. ( ) 0 when so .x x k x x
k
πψ π= = = =  Thus the width of 

this function 0
0

22 .xw x
k
π= =  If 0

2 , .xk w L
L
π

= =  ( )B k  versus k is graphed in Figure 40.49a. The graph of 

( )xψ  versus x is in Figure 40.49b. 

(c) If 0 , 2 .xk w L
L
π= =  

EVALUATE:   (d) 0

0 0 0

2 .
2

k k
p x

hw hw hkw w h
k k k
π

π
⎛ ⎞⎛ ⎞= = = =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 If xx wΔ =  and ,x pp wΔ = then the uncertainty 

principle states that .
2p xw w ≥ =  For us, no matter what 0 is, ,p xk w w h=  which is greater than /2.=  

 

  

Figure 40.49 
 

 40.50. IDENTIFY:   If the given wave function is a solution to the Schrödinger equation, we will get an identity 
when we substitute that wave function into the Schrödinger equation. 
SET UP:   The given function is ( ) ,ikxx Aeψ =  and the one-dimensional Schrödinger equation is 

2

2
( ) ( ) ( ) ( ).

2
d x U x x E x

m dx
ψ ψ ψ− + ==  

EXECUTE:   Start with the given function and take the indicated derivatives: ( ) .ikxx Aeψ =  

( ) .ikxd x Aike
dx

ψ =  
2

2 2 2
2
( ) .ikx ikxd x Ai k e Ak e

dx
ψ = = −  

2
2

2
( ) ( ).d x k x

dx
ψ ψ= −  

2 2
2

2
( ) ( ).

2 2
d x k x

m mdx
ψ ψ− =  = =  

Substituting these results into the one-dimensional Schrödinger equation gives 
2 2

0( ) ( ) ( ).
2

k x U x E x
m

ψ ψ ψ + =  
=
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EVALUATE:   ( ) ikxx A eψ =   is a solution to the one-dimensional Schrödinger equation if 
2 2

0 2
kE U
m

− =
=  

or 0
2

2 ( ) .m E Uk −=
=

 (Since 0U E<  was given, k is the square root of a positive quantity.) In terms of the 

particle’s momentum p: / ,k p= =  and in terms of the particle’s de Broglie wavelength :λ 2 / .k π λ=  

 40.51. IDENTIFY:   Let I refer to the region 0x <  and let II refer to the region 0,x >  so 1 1( ) ik x ik x
I x Ae Beψ −= +  

and 2( ) .ik x
II x Ceψ =  Set (0) (0)I IIψ ψ=  and I IId d

dx dx
ψ ψ=  at 0.x =  

SET UP:   ( ) .ikx ikxd e ike
dx

=  

EXECUTE:   (0) (0)I IIψ ψ=  gives .A B C+ =  I IId d
dx dx
ψ ψ=  at 0x =  gives 1 1 2 .ik A ik B ik C− =  Solving 

this pair of equations for B and C gives 1 2

1 2

k kB A
k k

⎛ ⎞−= ⎜ ⎟+⎝ ⎠
 and 2

1 2

2 .kC A
k k

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 

EVALUATE:   The probability of reflection is 
2 2

1 2
2 2

1 2

( ) .
( )

B k kR
A k k

−
= =

+
 The probability of transmission is 

2 2
1

2 2
1 2

4 .
( )

C kT
A k k

= =
+

 Note that 1.R T+ =  

 40.52. IDENTIFY:   For a particle in a box, 
2 2

2 .
8n
n hE
mL

=  

SET UP:   1n n nE E E+Δ = −  

EXECUTE:   (a) 
2 2

2 2 2
( 1) 2 1 2 1 .n
n n nR

nn n n
+ − +

= = = +  This is never larger than it is for 11, and 3.n R= =  

EVALUATE:   (b) nR  approaches zero as n becomes very large. In the classical limit there is no 
quantization and the spacing of successive levels is vanishingly small compared to the energy levels.  
Therefore, nR  for a particle in a box approaches the classical value as n becomes very large. 

 40.53. IDENTIFY and SET UP:   The energy levels are given by Eq. (40.31): 
2 2

2 .
8n
n hE
mL

=  Calculate EΔ  for the 

transition and set / ,E hc λΔ =  the energy of the photon. 

EXECUTE:   (a) Ground level, 
2

1 21, .
8

hn E
mL

= =  First excited level, 
2

2 2
42, .

8
hn E

mL
= =  The transition 

energy is 
2

2 1 2
3 .

8
hE E E

mL
Δ = − =  Set the transition energy equal to the energy /hc λ  of the emitted photon. 

This gives 
2

2
3 .

8
hc h

mLλ
=  

2 31 8 9 2

34
8 8(9.109 10  kg)(2.998 10  m/s)(4.18 10  m) .

3 3(6.626 10  J s)
mcL

h
λ

− −

−
× × ×= =

× ⋅
 

51.92 10  m 19.2 m.λ μ−= × =  

(b) Second excited level has 3n =  and 
2

3 2
9

8
hE

mL
=  The transition energy is 

2 2 2

3 2 2 2 2
9 4 5 .

8 8 8
h h hE E E

mL mL mL
Δ = − = − =  

2

2
5

8
hc h

mLλ
=  so 

28 3 (19.2 ) 11.5 m.
5 5

mcL m
h

λ μ μ= = =  

EVALUATE:   The energy spacing between adjacent levels increases with n, and this corresponds to a 
shorter wavelength and more energetic photon in part (b) than in part (a). 
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 40.54. IDENTIFY:   The probability of finding the particle between 1x  and 2x  is 2

1

2 .
x

x
dxψ∫  

SET UP:   For the ground state 1
2 sin .x
L L

πψ =  2 1
2sin (1 cos2 ).θ θ= −  1cos  sin .x dx xα α

α
=∫  

EXECUTE:   (a) 
/4/4 /42

0 0 0

2 2 1 2 1 2 1 1sin 1 cos sin ,
2 2 4 2

LL Lx x L xdx dx x
L L L L L L

π π π
π π

⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  which is 

about 0.0908. 

(b) Repeating with limits of /4 and /2L L  gives 
/2

/4

1 2 1 1sin ,
2 4 2

L

L

L xx
L L

π
π π

⎛ ⎞− = +⎜ ⎟
⎝ ⎠

 about 0.409. 

(c) The particle is much likely to be nearer the middle of the box than the edge. 
EVALUATE:   (d) The results sum to exactly 1

2 .  Since the probability of the particle being anywhere in the 

box is unity, the probability of the particle being found between /2x L=  and x L=  is also 1
2 .  This means 

that the particle is as likely to be between 0 and /2x L=  as it is to be between /2 and .x L x L= =  
(e) These results are consistent with Figure 40.12b in the textbook.  This figure shows a greater probability 
near the center of the box. It also shows symmetry of 2ψ  about the center of the box. 

 40.55. IDENTIFY:   The probability of the particle being between 1x  and 2x  is 2

1

2| | ,
x

x
dxψ∫  where ψ  is the 

normalized wave function for the particle. 

(a) SET UP:   The normalized wave function for the ground state is 1
2 sin .x
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE:   The probability P of the particle being between /4x L=  and 3 /4x L=  is 
3 /4 3 /42 2

1/4 /4
2 sin .

L L

L L
xP dx dx

L L
πψ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠∫ ∫  Let / ; ( / )y x L dx L dyπ π=  =  and the integration limits become 

/4π  and 3 /4.π  
3 /43 /4 2

/4 /4

2 2 1 1sin sin 2
2 4

LP y dy y y
L

ππ

π ππ π
⎛ ⎞ ⎡ ⎤= = −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∫  

2 3 1 3 1sin sin
8 8 4 2 4 2

P π π π π
π
⎡ ⎤⎛ ⎞ ⎛ ⎞= − − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

2 1 1 1 1( 1) (1) 0 818.
4 4 4 2

P π
π π
⎛ ⎞= − − + = + = .⎜ ⎟
⎝ ⎠

 (Note: The integral formula 
2 1 1sin sin 2

2 4
y dy y y= −∫  was used.) 

(b) SET UP:   The normalized wave function for the first excited state is 2
2 2sin .x
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE:   
3 /4 3 /42 2

2/4 /4
2 2sin .

L L

L L
xP dx dx

L L
πψ ⎛ ⎞= = ⎜ ⎟

⎝ ⎠∫ ∫  Let 2 / ; ( /2 )y x L dx L dyπ π=  =  and the integration 

limits become /2π  and 3 /2.π  
3 /23 /2 2

/2 /2

2 1 1 1 1 3sin sin 2 0 500
2 2 4 4 4
LP y dy y y

L

ππ

π π

π π
π π π

⎛ ⎞ ⎡ ⎤ ⎛ ⎞= = − = − = .⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠∫  

(c) EVALUATE:   These results are consistent with Figure 40.11b in the textbook. That figure shows that 2ψ  
is more concentrated near the center of the box for the ground state than for the first excited state; this is 
consistent with the answer to part (a) being larger than the answer to part (b). Also, this figure shows that for 
the first excited state half the area under 2ψ  curve lies between /4L  and 3 /4,L  consistent with our answer 
to part (b). 
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 40.56. IDENTIFY:   The probability is 2 ,dxψ  with ψ  evaluated at the specified value of x. 

SET UP:   For the ground state, the normalized wave function is 1 2/ sin( / )L x Lψ π= . 

EXECUTE:   (a) 2(2/ ) sin ( /4) / .L dx dx Lπ =  

(b) 2(2/ ) sin ( /2) 2 /L dx dx Lπ =  

(c) 2(2 )sin (3 /4) /L dx Lπ =  

EVALUATE:   Our results agree with Figure 40.12b in the textbook. 2ψ  is largest at the center of the box, 

at /2.x L=  2ψ  is symmetric about the center of the box, so is the same at /4x L=  as at 3 /4.x L=  
 40.57. IDENTIFY and SET UP:   The normalized wave function for the 2n =  first excited level is 

2
2 2sin .x
L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

2( )P x dxψ=  is the probability that the particle will be found in the interval x to .x dx+  

EXECUTE:   (a) /4x L=  
2 2 2 2( ) sin sin .

4 2
Lx

L L L L
π πψ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 

(2/ )P L dx=  
(b) /2x L=  

2 2 2( ) sin sin( ) 0.
2
Lx

L L L
πψ π⎛ ⎞⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 

0P =  
(c) 3 /4x L=  

2 2 3 2 3 2( ) sin sin .
4 2
Lx

L L L L
π πψ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= = = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 

(2/ )P L dx=  

EVALUATE:   Our results are consistent with the 2n =  part of Figure 40.12 in the textbook. 2ψ  is zero at 
the center of the box and is symmetric about this point. 

 40.58. IDENTIFY:   The impulse applied to a particle equals its change in momentum. 

SET UP:   For a particle in a box, the magnitude of its momentum is 
2
nhp k
L

= ==  (Eq. 40.29). 

EXECUTE:   final initial.Δ = −G G Gp p p  .
2

n hnk
L L
π= = =p =G =  At 0x =  the initial momentum at the wall is 

initial
ˆ

2
hn
L

= −p iG  and the final momentum, after turning around, is final
ˆ.

2
hn
L

= +p iG  So, 

ˆ ˆ ˆ.
2 2
hn hn hn
L L L

⎛ ⎞Δ = + − − = +⎜ ⎟
⎝ ⎠

p i i iG  At x L=  the initial momentum is initial
ˆ

2
hn
L

= +p iG  and the final 

momentum, after turning around, is final
ˆ.

2
hn
L

= −Gp i  So, ˆ ˆ ˆ.
2 2
hn hn hn
L L L

Δ = − − = −Gp i i i  

EVALUATE:   The impulse increases with n. 
 40.59. IDENTIFY:   Carry out the calculations that are specified in the problem. 

SET UP:   For a free particle, ( ) 0U x =  so Schrödinger’s equation becomes 
2

2 2
( ) 2 ( ).d x m E x

dx h
ψ ψ= −  

EXECUTE:   (a) The graph is given in Figure 40.59. 

(b) For 0: ( ) .xx x e κψ +< =  
2

2( ) ( ).  .x xd x d xe e
dx dx

κ κψ ψκ κ+ += =  So 
2 2

2
2

2 .
2

m E E
m
κκ = − ⇒ = −

=
=
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(c) For 0: ( ) .xx x e κψ −> =  ( ) .xd x e
dx

κψ κ −= −  
2

2( ) .xd x e
dx

κψ κ −=  So again 
2 2

2
2

2 .
2

m E E
m
κκ −= − ⇒ = =

=
 

Parts (b) and (c) show ( )xψ  satisfies the Schrödinger’s equation, provided 
2 2

.
2

E
m
κ−= =  

EVALUATE:   (d) ( )d x
dx

ψ  is discontinuous at 0.x = (That is, it is negative for 0x >  and positive for 0.)x <  

Therefore, this ψ  is not an acceptable wave function; /d dxψ  must be continuous everywhere, except 
where .U → ∞  

 

 
Figure 40.59 

 

 40.60. IDENTIFY:   We start with the penetration distance formula given in the problem. 

SET UP:   The given formula is 
0

.
2 ( )m U E

η =
−

=  

EXECUTE:   (a) Substitute the given numbers into the formula: 
34

11
31 190

1 055 10  J s 7 4 10  m
2 ( ) 2(9 11 10  kg)(20 eV 13 eV)(1 602 10  J/eV)m U E

η
−

−
− −

. × ⋅= = = . ×
− . × − . ×

=
 

(b) 
34

15
27 13

1 055 10  J s 1 44 10  m
2(1 67 10  kg)(30 MeV 20 MeV)(1 602 10  J/MeV)

η
−

−
− −

. × ⋅
= = . ×

. × − . ×
 

EVALUATE:   The penetration depth varies widely depending on the mass and energy of the particle. 
 40.61. IDENTIFY:   Eq. (40.38) applies for 0 .x L≤ ≤  Eq. (40.40) applies for 0x <  and .x L>  0D =  for 0x <  

and 0C =  for .x L>  

SET UP:   Let 2 .mEk =
=

 sin cos .d kx k kx
dx

=  cos sin .d kx k kx
dx

= −  .x xd e e
dx

κ κκ=  .x xd e e
dx

κ κκ− −= −  

EXECUTE:   (a) We set the solutions for inside and outside the well equal to each other at the well 
boundaries, 0 and .x L=  

0: sin(0) ,x B A C A C= + = ⇒ =  since we must have 0 for 0.D x= <  

2 2: sin cos  since 0 for .LmEL mELx L B A De C x Lκ−= + = + = >
= =

 

This gives 2sin cos , where .L mEB kL A kL De kκ−+ = =
=

 

(b) Requiring continuous derivatives at the boundaries yields 
00: cos( 0) sin( 0) .kdx kB k kA k kB Ce kB C

dx
ψ κ κ⋅= = ⋅ − ⋅ = = ⇒ =  

: cos sin Lx L kB kL kA kL De κκ −= − = −  
EVALUATE:   These boundary conditions allow for B, C, and D to be expressed in terms of an overall 
normalization constant A. 
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 40.62. IDENTIFY:   2 LT Ge κ−=  with 0

0 0

2 ( ) 116 1  and , so ln .
2

m U EE E TG L
U U G

κ
κ

⎛ ⎞ − ⎛ ⎞= − = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ =

 

SET UP:   31
05.5 eV, 10.0 eV, 9.11 10 kg, and 0.0010.E U m T−= = = × =  

EXECUTE:   
31 19

10 1
34

2(9.11 10 kg)(4.5 eV)(1.60 10 J/eV)
1.09 10 m

(1.054 10 J s)
κ

− −
−

−
× ×

= = ×
× ⋅

 

5.5 eV 5.5 eVand 16 1 3.96,
10.0 eV 10.0 eV

G
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

 

10
10 1

1 0.0010so ln 3.8 10 m 0.38 nm.
3.962(1.09 10 m )

L −
−

⎛ ⎞= − = × =⎜ ⎟× ⎝ ⎠
 

EVALUATE:   The energies here are comparable to those of electrons in atoms, and the barrier width we 
calculated is on the order of the diameter of an atom. 

 40.63. IDENTIFY and SET UP:   When Lκ  is large, then Leκ  is large and Le κ−  is small. When Lκ  is small,  
sinh .L Lκ κ→  Consider both Lκ  large and Lκ  small limits. 

EXECUTE:   (a) 
12

0

0

( sinh )1
4 ( )
U LT

E U E
κ

−
⎡ ⎤

= +⎢ ⎥−⎢ ⎥⎣ ⎦
 

sinh 
2

L Le eL
κ κ

κ
−−=  

For 1,Lκ �  sinh 
2

LeL
κ

κ →  and 
12 2

0 0
2 2

0 0 0

16 ( )1
16 ( ) 16 ( )

L

L
U e E U ET
E U E E U E U e

κ

κ

−
⎡ ⎤ −→ + =⎢ ⎥− − +⎢ ⎥⎣ ⎦

 

For 2 2 2 2
0 0 01, 16 ( ) L LL E U E U e U eκ κκ − + →�  

20
2 2

0 00

16 ( ) 16 1 ,L
L

E U E E ET e
U UU e

κ
κ

−⎛ ⎞⎛ ⎞−→ = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 which is Eq. (40.42). 

(b) 02 ( )
.

L m U E
Lκ

−
=

=
 So 1Lκ �  when L is large (barrier is wide) or 0U E−  is large. (E is small 

compared to 0.)U  

(c) 02 ( )
;

m U E
κ κ

−
=

=
 becomes small as E approaches 0.U  For κ  small, sinh L Lκ κ→  and 

1 12 2 2 2 2
0 0 0

2
0 0

2 ( )1 1
4 ( ) 4 ( )

U L U m U E LT
E U E E U E

κ
− −

⎡ ⎤ ⎡ ⎤−→ + = +⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦=
 (using the definition of κ ). 

Thus 
12 2

0
2

21
4
U L mT

E

−
⎡ ⎤

→ +⎢ ⎥
⎢ ⎥⎣ ⎦=

  

 0U E→  so 
2
0U E

E
→  and 

12

2
21

4
EL mT

−
⎡ ⎤

→ +⎢ ⎥
⎢ ⎥⎣ ⎦=

  

But 2
2

2 ,mEk =
=

 so 
12

1 ,
2

kLT
−

⎡ ⎤⎛ ⎞→ +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 as was to be shown. 

EVALUATE:   When Lκ  is large Eq. (40.41) applies and T is small. When 0,E U→  T does not approach unity. 
 40.64. IDENTIFY:   Compare the energy E of the oscillator to Eq. (40.46) in order to determine n. 

SET UP:   At the equilibrium position the potential energy is zero and the kinetic energy equals the total 
energy. 
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EXECUTE:   (a) 21 [ (1/2)] [ (1/2)] ,
2

E mv n n hfω= = + = +=  and solving for n, 

2 2
30

34

1
1 (1/2)(0.020 kg)(0.360 m/s) 12 1.3 10 .
2 2(6.63 10  J s)(1.50 Hz)

mv
n

hf −= − = − = ×
× ⋅

  

(b) The difference between energies is 34 34(6.63 10 J s)(1.50 Hz) 9.95 10 J.hfω − −= = × ⋅ = ×=  This energy 
is too small to be detected with current technology. 
EVALUATE:   This oscillator can be described classically; quantum effects play no measurable role. 

 40.65. IDENTIFY and SET UP:   Calculate the angular frequency ω  of the pendulum and apply Eq. (40.46) for the 
energy levels. 

EXECUTE:   12 2 4  s
0.500 sT

π πω π −= = =   

The ground-state energy is 34 1 34
0

1 1 (1.055 10  J s)(4  s ) 6.63 10  J.
2 2

E ω π− − −= = × ⋅ = ×=  

34 19 15
0 6 63 10  J(1 eV/1.602 10  J) 4.14 10  eVE − − −= . × × = ×   

1
2nE n ω⎛ ⎞= +⎜ ⎟

⎝ ⎠
=   

1
11
2nE n ω+

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

=   

The energy difference between the adjacent energy levels is 
33 15

1 02 1.33 10  J 8 30 10  eV.n nE E E Eω − −
+Δ = − = = = × = . ×=  

EVALUATE:   These energies are much too small to detect. Quantum effects are not important for ordinary 
size objects. 

 40.66. IDENTIFY:   We model the electrons in the lattice as a particle in a box. The energy of the photon is equal 
to the energy difference between the two energy states in the box. 

SET UP:   The energy of an electron in the thn  level is 
2 2

2 .
8n
n hE
mL

=  We do not know the initial or final 

levels, but we do know they differ by 1. The energy of the photon, / ,hc λ  is equal to the energy difference 
between the two states. 

EXECUTE:   The energy difference between the levels is 
34 8

7
(6 63 10  J s)(3 00 10  m/s)

1 649 10  m
hcE
λ

−

−
. × ⋅ . ×

Δ = = =
. ×

 

181.206 10  J.−×  Using the formula for the energy levels in a box, this energy difference is equal to 
2 2

2 2
2 2( 1) (2 1) .

8 8
h hE n n n
mL mL

⎡ ⎤Δ = − − = −⎣ ⎦   

Solving for n gives 
2 18 31 9 2

2 34 2
1 8 1 (1.206 10  J)8(9.11 10  kg)(0.500 10  m)1 1 3.
2 2 (6.626 10  J s)

E mLn
h

− − −

−

⎛ ⎞ ⎛ ⎞Δ × × ×= + = + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟× ⋅⎝ ⎠ ⎝ ⎠
 

The transition is from 3n =  to 2.n =  
EVALUATE:   We know the transition is not from the 4n =  to the 3n =  state because we let n be the 
higher state and 1n −  the lower state. 

 40.67. IDENTIFY:   At a maximum, the derivative of the probability function is zero. 

SET UP and EXECUTE:   
2

( ) ,xx Ce αψ −=  where .
2
mkα ′=
=

 
22 2 2( ) .xx C e αψ −=  At values of x where 

2( )xψ  is a maximum, 
2( )

0
d x

dx
ψ

=  and 
22

2
( )

0.
d x

dx
ψ

<  
2

2
2 2( )

( 2 ) 0.xd x
C x e

dx
αψ

α −= − =  Only 
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solution is 0.x =  
2 2

22
2 2 2 2

2
( )

2 4 .x xd x
C e x e

dx
α αψ

α α− −⎡ ⎤= − +⎢ ⎥⎣ ⎦
 At 0,x =  

22
2

2
( )

( 2 ) 0,
d x

C
dx
ψ

α= − <  so 

2( )xψ  is a maximum at 0.x =   
EVALUATE:   There is only one maximum, at 0,x =  so the probability function peaks only there. 

 40.68. IDENTIFY:   If the given wave function is a solution to the Schrödinger equation, we will get an identity 
when we substitute that wave function into the Schrödinger equation. 

SET UP:   The given wave function is 
2 2/2

1 1( ) xx A xe αψ −=  and the Schrödinger equation is 
2 2

2
( ) ( ) ( ).

2 2
d x k x x E x

m dx
ψ ψ ψ′− + =  =   

EXECUTE:   (a) Start by taking the indicated derivatives: 
2 2 /2

1 1( ) .xx A xe αψ −=  
2 2 2 22 2 /2 /21

1 1
( ) .x xd x x A e A e

dx
α αψ α − −= − +  

2 2 2 2 2 22
2 /2 2 2 2 /2 2 /21

1 1 12
( ) 2 ( ) ( ) .x x xd x A xe A x x e A x e

dx
α α αψ α α α α− − −= − − − + −  

2
2 2 2 2 2 2 2 2 21

1 12
( ) 2 ( ) ( ) 3 ( ) ( ).d x x x x x

dx
ψ α α α ψ α α ψ⎡ ⎤ ⎡ ⎤= − + −  = − +  ⎣ ⎦ ⎣ ⎦  

2 2
2 2 2 21

12
( ) 3 ( ) ( ).

2 2
d x x x

m mdx
ψ α α ψ⎡ ⎤− = − − +  ⎣ ⎦

= =   

Equation (40.44) is 
2 2

2
( ) ( ) ( ).

2 2
d x k x x E x

m dx
ψ ψ ψ′

− + =  
=  Substituting the above result into that equation 

gives 
2 2

2 2 2 2
1 1 13 ( ) ( ) ( ) ( ).

2 2
k x

x x x E x
m

α α ψ ψ ψ′⎡ ⎤− − +  + =  ⎣ ⎦
=

 Since 2 mωα =
=

 and ,k
m

ω ′=  the 

coefficient of 2x  is 
22 2 2

2 2( ) 0.
2 2 2 2

k m m
m m

ω ωα ′ ⎛ ⎞− + = − + =⎜ ⎟
⎝ ⎠

= =
=

 

(b) 
3/4 1/4

1
4mA ω
π

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

  

(c) The probability density function 2ψ  is 
2 22 2 2

1 1( ) xx A x e αψ −=   

At 0,x =  2
1 0.ψ =  

2 2 2 2 2 2 2 2
2

1 2 2 2 2 2 2 3 2
1 1 1 1

( )
2 ( 2 ) 2 2 .x x x xd x

A xe A x x e A xe A x e
dx

α α α αψ
α α− − − −= + − = −  

At 0,x =  
2

1( )
0.

d x
dx

ψ
=  At 1 ,x

α
= ±  

2
1( )

0.
d x

dx
ψ

=   

2 2 2 2 2 2 2 2
22

1 2 2 2 2 2 2 2 3 2 2
1 1 1 12

( )
2 2 ( 2 ) 2(3 ) 2 ( 2 ) .x x x xd x

A e A x x e A x e A x x e
dx

α α α αψ
α α α α− − − −= + − − − −  

2 2 2 2 2 2 2 2
22

1 2 2 2 2 2 2 2 2 4 2 2
1 1 1 12

( )
2 4 6 8 ( ) .x x x xd x

A e A x e A x e A x e
dx

α α α αψ
α α α− − − −= − − +  At 0,x =  

22
1

2
( )

0.
d x

dx
ψ

>  So at 0,x =  the first derivative is zero and the second derivative is positive. Therefore, 

the probability density function has a minimum at 0.x =  At 1 ,x
α

= ±  
22

1
2
( )

0.
d x

dx
ψ

<  So at 1 ,x
α

= ±  the 

first derivative is zero and the second derivative is negative. Therefore, the probability density function has 

maxima at 1 ,x
α

= ±  corresponding to the classical turning points for 0n =  as found in the previous question. 
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EVALUATE:   
2 2/ 2

1 1( ) xx A xe αψ −=  is a solution to Eq. (40.44) if 
2

2
1 1( 3 ) ( ) ( )

2
x E x

m
α ψ ψ− − =  

=  or 

2 23 3 .
2 2

E
m
α ω= == =  1

3
2

E ω= =  corresponds to 1n =  in Equation (40.46). 

 40.69. IDENTIFY:   For a standing wave in the box, there must be a node at each wall and .
2

n Lλ⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

SET UP:   hp
λ

=  so .hmv
λ

=   

EXECUTE:   (a) For a standing wave, 2 ,n Lλ =  and 
2 2 2 2

2
( / ) .

2 2 8n
p h n hE
m m mL

λ= = =  

(b) With 10 17
0 10.5292 10 m, 2.15 10 J 134 eV.L a E− −= = × = × =  

EVALUATE:   For a hydrogen atom, nE  is proportional to 21/n  so this is a very poor model for a hydrogen 
atom. In particular, it gives very inaccurate values for the separations between energy levels. 

 40.70. IDENTIFY and SET UP:   Follow the steps specified in the problem. 
EXECUTE:   (a) As with the particle in a box, ( ) sin , where is a constant andx A kx Aψ =  2 22 / .k mE= =  
Unlike the particle in a box, however, k  and hence E  do not have simple forms. 
(b) For ,x L>  the wave function must have the form of Eq. (40.40). For the wave function to remain finite 

as 2
0, 0. The constant 2 ( )/ ,x C m U Eκ→ ∞ = = − =  as in Eq. (40.40). 

(c) At , sin and cos .L Lx L A kL De kA kL Deκ κκ− −= = = −  Dividing the second of these by the first gives 
cot ,k kL κ= − a transcendental equation that must be solved numerically for different values of the length 

L  and the ratio 0/ .E U  

EVALUATE:   When 0 ,U → ∞  κ → ∞  and cos( ) .
sin( )

kL
kL

→ ∞  The solutions become , 1, 2, 3, ,nk n
L
π= = …  the 

same as for a particle in a box. 
 40.71. IDENTIFY:   Require ( /2) ( /2) 0.L Lψ ψ− = =  

SET UP:   2 ,k π
λ

=  hp
λ

=  and 
2

.
2
pE
m

=  

EXECUTE:   (a) ( ) sin and ( /2) 0 ( /2)x A kx L Lψ ψ ψ= − = = +  

2 20 sin
2 2
kL kL nA n k

L
π ππ

λ
+ +⎛ ⎞⇒ = ⇒ = ⇒ = =⎜ ⎟

⎝ ⎠
2 2 2 2 2

2 2
(2 ) , where 1, 2

2 2 8n n
L h nh p n h n hp E n
n L m mL mL

λ
λ

⇒ = ⇒ = = ⇒ = = = = …   

(b) ( ) cos and ( /2) 0 ( /2)x A kx L Lψ ψ ψ= − = = +  

2 2

2

(2 1) 20 cos (2 1)
2 2 2

2 (2 1)
(2 1) 2

(2 1) 0,1, 2
8

n

n

kL kL nA n k
L

L n hp
n L

n hE n
mL

π π π
λ

λ

+⎛ ⎞⇒ = ⇒ = + ⇒ = =⎜ ⎟
⎝ ⎠

+
⇒ = ⇒ =

+

+
⇒ = = …

 

(c) The combination of all the energies in parts (a) and (b) is the same energy levels as given in  

Eq. (40.31), where 
2 2

2 .
8n
n hE
mL

=  

EVALUATE:   (d) Part (a)’s wave functions are odd, and part (b)’s are even. 
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 40.72. IDENTIFY and SET UP:   Follow the steps specified in the problem. 

EXECUTE:   (a) 
2

( ) ( ) 2 ( ( )).
2
p

E K U x U x p m E U x
m

= + = + ⇒ = −  ( ) .
2 ( ( ))

h h
x

p m E U x
λ λ= ⇒ =

−
 

(b) As ( ) gets larger (i.e., ( ) approachesU x U x E  from below—recall 0), ( )k E U x≥ −  
gets smaller, so ( ) gets larger.xλ   
(c) When ( ), ( ) 0, so ( ) .E U x E U x xλ= − = → ∞  

(d) 1
2 ( ( ))

( ) 2/ 2 ( ( ))
b b b

a a a

dx dx n
m E U x dx

x hh m E U xλ
= = − =

−∫ ∫ ∫  2 ( ( )) .
2

b

a

hnm E U x dx⇒ − =∫   

(e) ( ) 0 for 0 with classical turning points at 0 and . So,U x x L x x L= < < = =  

0 0
2 2 2

2

2 ( ( )) 2 2 2 . So, from part (d),

12 .
2 2 2 8

b L L

a
m E U x dx mEdx mE dx mEL

hn hn h nmEL E
m L mL

− = = =

⎛ ⎞= ⇒ = =⎜ ⎟
⎝ ⎠

∫ ∫ ∫
 

EVALUATE:   (f) Since ( ) 0U x =  in the region between the turning points at 0 and , thex x L= =  result is 
the same as part (e). The height 0U  never enters the calculation. WKB is best used with smoothly varying 
potentials ( ).U x  

 40.73. DENTIFY:   Perform the calculations specified in the problem. 
SET UP:   21

2( ) .U x k x= ′  

EXECUTE:   (a) At the turning points 2
TP TP

1 2 .
2

EE k x x
k

= ⇒ = ±′
′

 

(b) 
2 / 2
2 /

12 .
2 2

E k

E k
nhm E k x dx

′+

′−
⎛ ⎞′− =⎜ ⎟
⎝ ⎠∫  To evaluate the integral, we want to get it into a form that matches 

the standard integral given. 2 2 2 21 2 22 2 .
2

mE Em E k x mE mk x mk x mk x
mk k

⎛ ⎞′ ′ ′ ′− = − = − = −⎜ ⎟ ′ ′⎝ ⎠
 

Letting 2 2 2 2, ,E E EA a and b
k k k

= = − = +
′ ′ ′

  

2 2 2 2 2

0

2 arcsin
2

22 2 2 2 2 1arcsin arcsin (1) 2 .
22

b
b

a
mk xmk A x dx x A x A

A

E kE E E E E mmk mk E
k k k k k kE k

⎡ ⎤⎛ ⎞′′⇒ − = − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞′ ⎛ ⎞′ ′= − + = =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ′ ′ ′ ′′ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∫
 

Using WKB, this is equal to , so . Recall , so .
2 2 2

hn m hn k hE E n h n
k m

π ω ω ω
π

′= = = =
′

 

EVALUATE:   (c) We are missing the zero-point-energy offset of 1recall .
2 2

E nω ω⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= =  It 

underestimates the energy. However, our approximation isn’t bad at all! 
 40.74. IDENTIFY and SET UP:   Perform the calculations specified in the problem. 

EXECUTE:   (a) At the turning points TP TP .EE A x x
A

= ⇒ = ±  

(b) 
/ /

/ 0
2 ( ) 2 2 ( ) . Let 2 ( )

E A E A

E A
m E A x dx m E Ax dx y m E Ax

+

−
− = − = − ⇒∫ ∫  

2 when , 0, and when 0, 2 . SoEdy mA dx x y x y mE
A

= − = = = =  
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00 1/2 3/2 3/2
0 2 2

1 2 2
2 2 ( ) (2 ) .

3 3

E
A

mE mE
m E Ax dx y dy y mE

mA mA mA
− = − = − =∫ ∫  Using WKB, this is equal to .

2
hn  

So, 
2/3

3/2 2/32 1 3(2 ) .
3 2 2 4

hn mAhmE E n
mA m

⎛ ⎞= ⇒ = ⎜ ⎟
⎝ ⎠

  

EVALUATE:   (c) The difference in energy decreases between successive levels. For example: 

 2/3 2/3 2/3 2/3 3/2 3 21 0 1, 2 1 0.59, 3 2 0.49,− = − = − = …   

• A sharp ∞  step gave ever-increasing level differences 2(~ ).n  

• A parabola 2(~ ) gave evenly spaced levels (~ ).x n   

• Now, a linear potential 2/3(~ ) gives ever-decreasing level differences (~ ).x n  
Roughly speaking, if the curvature of the potential (~ second derivative) is bigger than that of a parabola, 
then the level differences will increase. If the curvature is less than a parabola, the differences will 
decrease. 


